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Abstract

Michigan-style learning classifier systems iteratively evolve a distributed solution to a problem in the
form of potentially overlapping subsolutions. Each problem niche is covered by subsolutions that are
represented by a set of predictive rules, termed classifiers. The genetic algorithm is designed to evolve
classifier structures that together cover the whole problem space and represent a complete problem so-
lution. An obvious challenge for such an online evolving, distributed knowledge representation is to
continuously sustain all problem subsolutions covering all problem niches, that is, to ensure niche sup-

port. Effective niche support depends both on the probability of reproduction and on the probability of
deletion of classifiers in a niche. In XCS, reproduction is occurrence-based whereas deletion is support-
based. In combination, niche support is assured effectively. In this paper we present a Markov chain
analysis of the niche support in XCS, which we validate experimentally. Evaluations in diverse Boolean
function settings, which require non-overlapping and overlapping solution structures, support the theo-
retical derivations. We also consider the effects of mutation and crossover on niche support. With respect
to computational complexity, the paper shows that XCS is able to maintain (partially overlapping) niches
with a computational effort that is linear in the inverse of the niche occurrence frequency.

Keywords: learning classifier systems, LCS, XCS, niching, Markov chain analysis, solution sustenance,
mutation

1 Introduction

Michigan-style learning classifier systems (LCSs) are rule-based, evolutionary online-learning systems that
can be applied to a wide range of learning problems including classification problems, function approximation
problems, and reinforcement learning problems. LCSs learn online from one problem instance at a time.
They evolve a solution represented by a population of condition-action-prediction rules, called classifiers.
Problem knowledge is represented by a set of subsolutions, which should cover the whole problem space. A
problem subspace in which one maximally accurate and maximally general subsolution applies is referred
to as a problem niche. Fundamental learning challenges in LCSs are the evolution and the sustenance of
all necessary problem subsolutions. This paper investigates the problem of sustaining a complete problem
solution and thus essentially covering all problem niches in a problem focusing on classification problems.
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The XCS classifier system [49] is known to perform well on various classification problems including
general data mining problems [1, 2, 21] as well as deterministic and noisy Boolean function problems [15].
So far, several problem bounds have been identified: population size bounds that ensure problem coverage
[16], population size bounds that ensure initial support and reproductive opportunities [15], and a learning
time bound that estimates the time until a complete solution is found using a domino-convergence model
[13]. All results confirm Wilson’s original hypothesis that XCS’s learning complexity scales polynomially in
problem complexity and problem size [50].

Our analysis of niche sustenance in XCS allows us to derive a population size bound that ensures the
sustenance of a complete solution to the underlying problem given a certain niche occurrence frequency.
Hereby, niche occurrence frequency refers to the frequency with which problem instances from a certain
environmental niche (a specific subspace in the problem) are sampled. The analysis enables us also to
estimate the minimal niche occurrence frequency for which XCS is able to lean and sustain a subsolution
with high probability given a certain (fixed) population size. Although the number and complexity of the
niches necessary to evolve a complete and accurate final problem solution cannot be known beforehand in the
general case, the derived population size bound can guarantee that XCS will maintain a complete problem
solution for problems up to a certain problem complexity. The complexity is strongly dependent on niche
size and niche occurrence frequency.

We first propose a Markov chain model to approximate niche sizes. Next, we derive the corresponding
steady state equation that estimates the distribution of niche sizes. The model depends on niche occurrence
frequency and the mutation type and rate used. We validate the model in non-overlapping problems, in
which the experimental evaluation matches the model nearly perfectly. We also consider problems in which
overlapping problem solutions are evolved. In such types of problems, additional competitive effects need to
be considered. The experimental evidence confirms the theoretical model. Further niching influences due to
additional XCS mechanisms, parameters, and problem properties are analyzed as well.

The model developed in this paper adds a new facet to the analysis of XCS: solution sustenance. The
derived population sizing bound oftentimes dictates the success of XCS learning so that the developed
model is a critical component for designing scalable XCS systems. In general, the objectives of this paper
are threefold: (1) To understand the solution sustenance mechanisms in the XCS classifier system; (2) To
derive a consequent population size bound that ensures niche support with high probability given a certain
problem complexity; (3) To emphasize the importance of solution sustenance in the learning classifier system
framework in general suggesting the necessary analysis of solution sustenance in any type of LCS.

The paper is organized as follows. Section 2 introduces the XCS classifier system. Section 3 introduces
the Markov model for niche support and Section 4 derives the closed form for the niche support distribu-
tion in steady state. Section 5 introduces the approach to experimental evaluation and Section 6 and 7
experimentally evaluate the niche support equations. Section 8 relates the results to the general learning
complexity in XCS. The paper ends with a discussion of the related work (Section 9), contributions of this
work (Section 10), and future directions (Section 11).

2 The XCS Classifier Systems

The accuracy-based classifier system XCS was introduced by Wilson [49]. The system was further improved
by Wilson [50] and Kovacs [37, 38]. We now provide a concise description of XCS focused on its knowledge
representation and niche genetic algorithm approach. For more details we refer the interested reader to the
original paper [49] and to the algorithmic description [18].

2.1 Knowledge Representation

As outlined in the introduction, XCS evolves a distributed knowledge representation expressed by a popula-
tion (set) of classifiers (rules). As outlined by Kovacs [36, 38], XCS is designed to evolve a non-overlapping,
optimal problem solution represented by an optimal set [O] of accurate, maximally general classifiers. This
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paper investigates the maintenance of this optimal set [O] under continual application of the evolutionary
discovery component.

Rules, or classifiers, in XCS consist of a condition, which specifies when the classifier is applicable, an
action, which specifies the suggested action or classification, and four main parameters: (i) the prediction
R, which estimates the relative payoff that the system expects when the classifier is used, (ii) the prediction
error ε, which estimates the mean absolute deviation of the prediction R, (iii) the fitness F , which estimates
the average relative accuracy of the payoff prediction derived from ε, and (iv) the numerosity num, which
indicates how many copies of micro-classifiers with the same condition and the same action are present in
the population. Additionally, each classifier has a time stamp ts that records the last GA application in a
classifier set that the classifier was part of, and the action set size estimate as, which estimates the average
action set size the classifier is part of. The parameter is updated similarly to the reward prediction R.1

2.2 Performance Component

At each time step, XCS builds a match set [M] containing the classifiers in the population [P] whose conditions
match the current sensory input. If [M] contains less than θmna actions, covering takes place and creates
a new classifier that matches the current inputs and has a random action. For each possible action ai in
[M], XCS computes the system prediction P (ai), which estimates the payoff that XCS expects if action ai is
performed. The system prediction is computed as the fitness weighted average of the predictions of classifiers
in [M], cl∈[M], which advocate action ai (i.e., cl.a=ai):

P (ai) =

∑

clk∈[M ]|ai

Rk · Fk
∑

clk∈[M ]|ai

Fk

(1)

where, [M ]|ai
represents the subset of classifiers of [M ] with action ai, Rk identifies the prediction of classifier

clk, and Fk identifies the fitness of classifier clk. Using the computed system prediction, XCS selects an
action using some behavioral policy (e.g. during knowledge exploitation, it chooses the action that promises
the maximum payoff). The classifiers in [M] that advocate the selected action form the current action set
[A]. The selected action is performed in the environment and a scalar reward r is returned indicating the
correctness, or quality, of the executed action. In classification this is usually 1000 for a correct action and
0 for an incorrect action. Next, the subsequent problem instance is received.

2.3 Reinforcement Component

Once the reward r is received the parameters of the classifiers in [A] are updated in the following order [18]:
prediction, prediction error, and finally fitness. In classification problems, classifier prediction R is updated
with learning rate β (0 ≤ β ≤ 1):

R← R + β(r −R). (2)

Next, the prediction error ε is updated as: ε ← ε + β(|r −R| − ε). Both parameters are usually updated
using the moyenne adaptative modifiée technique [46], which averages the encountered values as long as
the resulting update is larger than the updated caused be learning rate β (that is, the number of updates
encountered so far is smaller than 1/β).

Fitness F is updated in three steps. First, the raw accuracy κ of the classifiers in [A] is computed as:

κ =

{

1 if ε ≤ ε0

α(ε/ε0)
−ν otherwise

(3)

The raw accuracy κ is used to calculate the relative accuracy κ′ as:

κ′ =
(κ · num)

∑

cl∈[A](cl.κ · cl.num)
(4)

1All parameters used in the paper are listed in Appendix A.
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where cl.κ is the raw accuracy of classifier cl, as computed in equation 3; cl.num is the numerosity of classifier
cl. Finally the relative accuracy κ′ is used to update the classifier fitness as:

F ← F + β(κ′ − F ) (5)

Thus, the fitness estimates the average relative accuracy of this (macro-)classifier, which consists of num
identical micro-classifiers.

2.4 Discovery Component

If the mean time since the previous GA application to the classifiers in action set [A] is larger than θGA,
genetic reproduction is applied in [A]. Two classifiers are selected with probability proportional to their
fitness. (The recently introduced tournament selection is not applied in the experiments herein. However,
comparisons show that the results also hold for tournament selection [12].) Genetic reproduction generates
two offspring classifiers performing crossover with probability χ and mutation with probability µ. Fitness in
the offspring classifiers is usually decreased by 0.1 compared to the parents.

The resulting offspring are inserted into the population and two classifiers are deleted to keep the pop-
ulation size constant. Deletion is done deleting classifiers proportional to their action set size estimate as.
Additionally, we investigate Kovacs’ deletion addition [37] that increases the deletion probability of a classi-
fier further if it is (1) experienced (exp > θdel) and (2) its fitness F is smaller than a fraction of the current
average fitness F̄ in the population (F < δF̄ ).

Thus, while reproduction is constrained to the current problem niche, which is essentially determined
by the current problem instance, deletion is applied to the whole population. Effectively, the probability
of reproduction in a particular problem niche is constrained by the niche occurrence (controlled by the
probability of occurrence of a problem instance belonging to that niche) whereas the probability of deletion
is mainly constrained by the current niche size. This insight forms the basis for the theory developed in the
following section.

3 Markov Chain Model for Niche Support

We now develop a Markov chain model for niche support in XCS. Essentially, we assume a Markov chain
based on the niche size of one particular niche, solely dependent on the niche occurrence probability p. The
model assumes a number of simplifications to enable the mathematical analysis. First, we focus on the
support of one niche only and initially neglect interactions with other niches. Second, we assume that the
genetic algorithm is always applied (θGA = 0) and that its application can only add to or delete from a niche
at most one classifier. Third, we assume that inputs are encountered according to a uniform distribution
Finally, we approximate classifier deletion with the uniform probability.

Subsequently, we relax several of these constraints. In particular, we consider niche interactions caused
by mutation experimentally and analytically. Moreover, we investigate the biases caused by XCS’s GA
application threshold θGA as well as by the enhanced classifier deletion technique, in which deletion is
proportional to classifiers’ action set size estimates and is biased on their fitness estimates.

Before introducing our model, we first need to define a problem niche and a representative of a problem
niche. We define a problem niche using the notion of a schema [29] in genetic algorithms and in classifiers [30].
Given a binary classification problem of length l, a schema defines the relevant attributes in the problem for
a particular problem niche. Additionally, an action needs to be specified. The number of specified positions
is termed the order o of the schema. This actually corresponds to the notation of the condition parts in
LCSs where the number of specialized attributes (i.e. the non-don’t care symbols) corresponds to the order.

In the spirit of Holland’s definition [30], we define a schema representative as a classifier that represents at
least all o specified attributes in the schema and specifies the correct action [15]. For example, given a schema
01*0*, the following classifier conditions are representatives of this schema: 01#0#, 0100#, 0110#, 01#00,
01000, 01100, 01#01, 01001, and 01101. Similarly, a particular problem instance is part of a particular
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Figure 1: Markov chain model for the support of one niche in XCS: k is the number of classifiers in the niche;
N is the maximum population size; rk is the probability that a classifier is added to a niche represented by
k classifiers; sk is the probability that the niche containing k classifiers is not modified by reproduction; dk

is the probability that a classifier is deleted from a niche containing k classifiers.

schema, if all specified attributes in the schema are equal to the corresponding attributes in the problem
instance. Thus, in our example problem instances 01000, 01100, 01001, and 01101 are part of schema 01*0*.

Suppose we have a particular problem niche represented by k classifiers. If we neglect additional deletion
biases, the probability of deleting one of the classifier representatives from a niche is k/N . Suppose that
the probability of encountering a problem instance that is part of the niche is equal to p. Given that XCS
learned the problem, we can assume that the action set resulting from the problem instance and an (e.g.
random) action choice consists solely of representatives of the currently relevant niche. Thus, given the GA is
applied, the probability that a representative is reproduced equals p. Ignoring potential disruptive effects by
mutation for now, the probability of generating an offspring that is a representative of the niche in question
also equals to p. We also assume that both genetic reproduction and deletion are applied in each iteration.
This is always the case once the population size reaches its maximum size N , which is true when a solution
was found except for in the most trivial problems.

With these assumptions, we can now derive the probabilities that the size of a particular niche, currently
represented by k classifiers, increases, decreases, or stays the same. At each time step, (i) with probability
rk the size of the niche increases because a classifier was added by the genetic algorithm, while another
classifier was deleted from another niche; (ii) with probability sk the niche size remains constant either
because no classifier was added nor deleted from the niche or because one classifier was added to the niche
while another one was deleted from the same niche; (iii) with probability dk the size of the niche decreases
because genetic reproduction was applied to another niche, while a classifier was deleted from this niche to
keep the population size constant.

According to the above derivations, probabilities rk, sk, and dk can be computed as follows:

rk = p

(

1−
k

N

)

(6)

sk = (1− p)

(

1−
k

N

)

+ p
k

N
(7)

dk = (1− p)
k

N
(8)

The consequent Markov chain is depicted in Figure 1. States in the model represent the different niche
support sizes. State labels indicate the number of representatives of a niche. Arcs correspond to increasing,
maintaining, and decreasing the number of representatives of the niche in question, labeled according to the
above equations with rk, sk, and dk, respectively.

In the limiting case when k = 0 we have r0 = p, s0 = 1 − p, and d0 = 0. When k = 0, the niche is
not represented in the population, therefore: (i) when an input belonging to the niche is presented to the
system (with probability p), a classifier will be generated through covering (assuming there are no over-
general classifiers present), therefore the approximation r0 = p is appropriate; (ii) since the niche has no
classifiers, deletion cannot take place, therefore d0 = 0; finally, (iii) the probability that the niche will remain
unrepresented is 1 − r0, that is s0 = 1− p. Similarly, for k = N we have rN = 0, sN = p, and dN = 1 − p.
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When k = N , all the classifiers in the population belong to the niche, accordingly: (i) no classifier can be
added to the niche, therefore rN = 0; (ii) with probability p an input belonging to the niche will be presented,
a classifier from the niche will be reproduced, while another one from the niche will be deleted, leaving the
niche size constant, therefore sN = p; (iii) when an input that does not belong to the niche is presented to
the system (with probability 1 − p), a classifier will be deleted from the niche to allow the insertion of the
new classifier to the other niche, therefore dN = 1− p.

Note that over-general classifiers are not considered as representatives of any niche. The experimental
investigations will show how over-general classifiers can further influence the resulting niche support distri-
butions. In addition, covering is assumed to create a (non-over-general) representative so that r0 = p is an
approximation. However, as outlined elsewhere [31], as long as a sufficiently large population size is chosen,
chopping off or approximating the quasi absorbing state r0 approximates the distribution accurately enough.
This is also confirmed by our experimental investigations. Given the above assumptions, we are now able to
derive a probability distribution over niche support.

4 Closed-Form Solution

We now derive a closed-form solution for the Markov model derived in the previous section. Basically, we
compute for each possible state k the probability uk that the niche will have k representatives. As the very
first step, we write the following fixed point equation [43] for the Markov chain in Figure 1:

uk = rk−1uk−1 + skuk + dk+1uk+1,

which expresses the probability uk that the niche has k classifiers (i.e., of being in state k) as the union of
three events: (i) reaching state k from state k − 1, with probability rk−1uk−1, by means of a reproductive
event; (ii) remaining in state k with probability skuk; (iii) reaching state k from state k +1, with probability
dk+1uk+1, by means of a deletion event. We can rewrite the same equation as:

(rk + dk)uk = rk−1uk−1 + dk+1uk+1,

which equates the probability of leaving state k, computed as (rk +dk)uk to the probability of entering state
k, computed as rk−1uk−1 + dk+1uk+1. By replacing dk+1, dk, rk, and rk+1 with the actual values we obtain:

[

p

(

1−
k

N

)

+
k

N
(1− p)

]

uk = p

(

1−
k − 1

N

)

uk−1 + (1− p)

(

k + 1

N

)

uk+1 (9)

where p is the probability that an input belonging to the niche will be encountered, N is the population size,
and k is the niche size. Equation 9 is a second order difference equation whose parameters are dependent on
k, i.e., on the current state. We use Equation 9 and the condition for a probability distribution:

k=N
∑

k=0

uk = 1

to derive the following closed-form equation for probability uk (see Appendix B for details):

uk =

(

N

k

)

pk(1− p)N−k (10)

The equation shows that the constant probability of reproduction p in combination with a linear increasing
probability of deletion k/N , results in a binomial distribution over niche support sizes in steady state.

In the next sections we validate Equation 10 experimentally. We also consider the influence of mutation
on niche support, which is strongly problem dependent. Moreover, we investigate the impact of over-general
classifiers, the r0 approximation, additional deletion biases, overlapping niches, and the impact of parameter
θGA.
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5 Design of the Experimental Validation

To validate the proposed Markov model for niche support, we perform two sets of experiments. In the first
set of experiments (Section 6), we apply XCS to a class of problems, the Boolean multiplexer, whose solutions
involve non-overlapping niches. In the second set of experiments (Section 7), we extend previous results and
apply XCS to a class of problems, the carry function, whose solutions involve overlapping niches. For each
experiment, we collect the statistics regarding the size of all the niches, and compare the distribution of
niche sizes estimated from the experiments with the model distribution provided by Equation 10.

5.1 Design of Experiments

Each experiment consists of a set of trials in which XCS is applied to solve a task with a specific setting. Each
trial consists of a number of problems that XCS must solve. At the end of each trial we measure the niche sizes
as the number of micro-classifiers that belong to each niche. As outlined in Section 3, we represent a niche by
a schema and an action; for example, the term “000***:0” identifies the niche containing classifiers whose
condition represent the schema 000*** and that have specified action 0. A classifier condition represents a
schema, if it is at least as specific as the schema. Accordingly, a classifier with condition 000##1 and action
0 belongs to the niche identified by “000***:0”; while a classifier with condition #00##1 (regardless of the
action) does not. The distribution of the niche size values collected throughout the trials is used to estimate
the values uk for every k, that is, to estimate the density function over niche sizes. All the experiments were
conducted on xcslib [39] and were duplicated using Butz’s implementation [10].

5.2 Design of Statistical Analysis

To analyze the experimental results reported, we use various statistical procedures involving both (i) simple
descriptive statistics (e.g., mean and standard error), (ii) parametric and nonparametric statistics to compare
the mean of the distributions derived from the experiments with the mean predicted by Equation 10; and
also (iii) nonparametric statistics to compare the distribution of niche sizes from the experiments with the
distribution provided by the model. More specifically, for each experiment, we provide a table showing the
following descriptive statistics: the sample mean and standard error (column “x±s”), and the sample median
(column “x0.5”); the mean µ and standard deviation σ as predicted by the model (column “µ ± σ”). To
compare the sample mean with the model mean we also provide the p-value for the (parametric) one sample
t-test for unequal variance (column tt) and the p-value for the (non-parametric) one sample Wilcoxon test
(column wt). These two statistical procedures test the null hypothesis H0 that the mean of the experimental
data x is equal to the mean of the theoretical distribution µ (i.e., H0 : x = µ), against the alternative
hypothesis H1 that the sample mean and the model mean differ (i.e., H1 : x 6= µ).

To test whether the distribution of the experimental data is compatible with a binomial distribution we
use Fisher’s Binomial Dispersion test [22], and report the corresponding p-value in the table as “bdt”. To
test whether the distribution of the experimental data actually fits the theoretical distribution provided
by the model we employ the goodness of fit for discrete distributions introduced in [23], and report the
corresponding p-value in the table as column “gof”.

To compare the distribution of niche sizes estimated from XCS, with that predicted by the model, we apply
both the two-sided and the one-sided Kolmogorov-Smirnov test [19]. To accomplish this, we first generate a
sample from the model distribution provided by Equation 10 of the same size as the data extracted by the
experiments. Then for each experiment, we apply three different versions of the two independent samples
Kolmogorov-Smirnov test. In particular, we apply the two-sided Kolmogorov-Smirnov (K), that tests the
hypothesis H0 that for every value x the empirical cumulative distribution function2 estimated from the
experiments (FXCS(x)) and the cumulative distribution function of the model (FM (x)) are the same (i.e.,
∀x ∈ (−∞,+∞)FXCS(x) = FM (x)) against the alternative hypothesis H1 that FXCS(x) 6= FM (x) for at
least one value of x. We apply the one-sided Kolmogorov-Smirnov test (K+) to test the hypothesis H0 : ∀x ∈

2We remind the reader that given a random variable X the cumulative distribution function F (x) is defined as F (x) =
P (X ≤ x).
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column description

x sample mean
s standard error

x0.5 sample median
µ± σ average and standard deviation for the model
bdt p-value for Fisher’s Dispersion Test for the binomial distribution
tt p-value for the one-sample t-test for unequal variance
wt p-value for the one-sample Mann-Whitney test
gof p-value for the χ2 goodness of fitness test for the Binomial distribution
K+ p-value for the one-way Kolmogorov-Smirnov test H0 : FXCS(x) ≥ FM (x)
K p-value for the two-way Kolmogorov-Smirnov test H0 : FXCS(x) = FM (x)

K− p-value for the one-way Kolmogorov-Smirnov test H0 : FXCS(x) ≤ FM (x)

Table 1: Statistics reported for experiments discussed in this paper.

(−∞,+∞) : FXCS(x) ≥ FM (x) against the hypothesis H1 : ∃x : FXCS(x) < FM (x). Finally, we apply the
one-sided Kolmogorov-Smirnov test (K−) to test the hypothesis H0 : ∀x ∈ (−∞,+∞) : FXCS(x) ≤ FM (x)
against the hypothesis H1 : ∃x : FXCS(x) > FM (x). For each of tests (K, K+, and K−) we report the
corresponding p-value in the table. Note that in all these three tests, the null hypothesis H0 is rejected
as soon as it does not hold for one value. Accordingly, we shall expect that in most of the cases the null
hypotheses will be rejected.

In Table 1 we provide a reference of all the statistics that we will report for the experiments discussed.
Note that although the Kolmogorov-Smirnov test should be applied to continuous distributions, the test is
conservative when applied to discrete distributions; in particular, when applied to discrete distributions the
true p-value is 1/3 of the computed p-value, see [19] for details. All the statistical tests reported in this
paper were conducted using the R environment for statistical computing [45].

6 Non-overlapping Subsolutions

In the first set of experiments we apply XCS to a problem involving non-overlapping niches. We compare
the empirical niche size distributions with the theoretical niche size distributions predicted by the model in
Equation 10. We show the partially disruptive effects of mutation and we investigate the influence of action
set size-based deletion as well as fitness-based deletion. Finally, we show that results also hold for larger
values of the GA activation threshold θGA.

6.1 Boolean Multiplexer

This class of problems has been widely studied in the learning classifier system literature (see for example
[34, 47, 49]). Boolean multiplexer are defined for strings of l = k + 2k bits. The first k bits, x0, . . . , xk−1,
represent an address which indexes the remaining 2k bits, xk, . . . , xk+2k−1; the function returns the value
of the indexed bit. For instance, in the 6-multiplexer function, mp6, we have that mp6(100010) = 1 while
mp6(000111) = 0. More formally, the 6-multiplexer can be represented by the following disjunctive normal
form:

mp6(x0, x1, y0, . . . , y3) = x0 x1y0 ∨ x0 x1y1 ∨ x0 x1y2 ∨ x0x1y3

For a Boolean multiplexer of size l, with k address bits, the size of the optimal population [O] in XCS is
2k+2 since XCS represents the expected payoff for the correct as well as the incorrect action. For instance,
the optimal solution for the 11-multiplexer (i.e., l = 11 and k = 3) consists of 32 (i.e., 23+2) classifiers.

In this section, we validate our model using the 11-multiplexer. More difficult multiplexer instances up
to the multiplexer 70 were solved with XCS [16]. The purpose of the following evaluations in the smaller
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0000*******:0 100****0***:0 0000*******:1 100****0***:1

0001*******:0 100****1***:0 0001*******:1 100****1***:1

001*0******:0 101*****0**:0 001*0******:1 101*****0**:1

001*1******:0 101*****1**:0 001*1******:1 101*****1**:1

010**0*****:0 110******0*:0 010**0*****:1 110******0*:1

010**1*****:0 110******1*:0 010**1*****:1 110******1*:1

011***0****:0 111*******0:0 011***0****:1 111*******0:1

011***1****:0 111*******1:0 011***1****:1 111*******1:1

Table 2: Niches for the 11-multiplexer; each niche is represented by a schema and an action.

multiplexer instance is to validate the derived model and investigate further XCS parameter influences.3 Suc-
cessful XCS applications to larger Boolean function problems as well as to real-world data mining problems
can be found elsewhere [16, 1, 2, 21].

6.2 Accurate Model Approximation

We applied XCS to the 11-multiplexer with three different population sizes, N = 500, N = 1000, and
N = 1500. Since in our model we assume that the genetic algorithm is applied at each time step, we set
θGA = 0. All other parameters are set as usual (see [18] for details): β = 0.2; θmna = 2; α = 0.1; ε0 = 1;
ν = 5; χ = 0.8, θdel = 20; δ = 0.1; GA-subsumption is on with θsub = 20; while action-set subsumption is
off. For each value of N , we run 1000 trials, each consisting of 100,000 problems. To eliminate the effects
of crossover and mutation, 50,000 steps of condensation [50] are performed at the end of each trial. During
condensation the genetic algorithm is acting but crossover and mutation are turned off. Thus, exactly as
hypothesized in our model, in condensation only selection and deletion are applied. From the final population,
we measure the size of the 32 problem niches (that is, the number of representatives for each problem niche).

Table 2 shows the 32 niches that need to be covered by classifier representatives for a complete, maximally-
accurate, maximally-general, non-overlapping problem solution for the 11-multiplexer, in correspondence to
Kovacs’ definition of an optimal set [O] of classifiers [36]. As previously outlined, each niche is represented
by a schema and an action. Since there are 32 niches of the same size and we sample problem instances
uniformly randomly, the probability p that a particular niche is encountered is 1/32.

Figure 2a reports (i) with dashed lines, the three theoretical distributions provided by our Markov model
(Equation 10) when p = 1/32, and N = 500, N = 1000, N = 1500; (ii) with solid lines, the distributions
of niche sizes estimated through the experiments when N = 500, N = 1000, and N = 1500. Since all 32
niches have the same p, the curves reported are obtained by measuring, for each of the 1000 trials, the size
of all the 32 possible niches. Thus, the empirical distributions are obtained from 32000 data entries. As
Figure 2a shows, when condensation is applied at the end of the experiments, the empirical and theoretical
distributions match almost completely.

The data in Figure 2a, are also reported in Figure 2b as empirical cumulative distribution functions
(ECDFs), obtained from the experimental data, and cumulative distribution functions (CDFs) predicted by
the model. As the curves in Figure 2b show that also ECDFs and CDFs almost overlap. The analysis of
final populations shows that in the vast majority of the cases populations contain exactly the 32 necessary
classifiers that represent the niches in Table 2. A closer look shows that the model’s CDFs overestimate the
ECDFs for small values of the niche size. Then ECDFs and CDFs cross so that for larger values of niche
size, the model (CDFs) underestimate actual XCS behavior (ECDFs).

Table 3 summarizes the results of the statistical analysis collected for all three trials. The table shows
that according to the t-test, tt, we cannot reject the null hypothesis, that is, we cannot determine whether
the sample mean and the model mean differ. The empirical data are compatible with a binomial distribution
(because of the high value of bdt). The Kolmogorov-Smirnov tests (columns K+, K, and K−) show that

3The same analysis on the even smaller 6-multiplexer is available in [14].
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Figure 2: Distributions and corresponding cumulative distributions of niche sizes for XCS with 50,000
condensation steps in the 11-multiplexer (solid line) and for the model provided by Equation 10 (dashed
line) when θGA = 0, the population sizes are 500, 1000, 1500, and 50,000 condensation steps are performed
at the end of each trial.

fig N x ± s x0.5 µ ± σ bdt tt wt gof K+ K K−

500 15.61 ± 3.89 15.00 15.62 ± 3.89 0.431 0.490 0.000 0.00 0.699 0.994 0.741
2 1000 31.25 ± 5.17 31.00 31.25 ± 5.50 1.000 0.997 0.017 0.00 0.000 0.000 0.001

1500 46.87 ± 6.19 47.00 46.88 ± 6.74 1.000 0.935 0.080 0.00 0.000 0.000 0.000

500 13.70 ± 3.67 14.00 15.62 ± 3.89 0.105 0.000 0.000 0.00 1.000 0.000 0.000
3 1000 28.52 ± 5.00 28.00 31.25 ± 5.50 1.000 0.000 0.000 0.00 1.000 0.000 0.000

1500 43.71 ± 5.97 44.00 46.88 ± 6.74 1.000 0.000 0.000 0.00 1.000 0.000 0.000

Table 3: XCS in the 11-multiplexer when θGA = 0. Statistics for the distribution of niche sizes depicted
in Figure 2 and Figure 3. Column fig indicates the figure to which the statistics refer to and N is the
population size. Table 1 specifies the meanings of the other columns.

none of the three hypotheses can be rejected for N = 500; while for N = 1000 and N = 1500 all the
hypotheses are rejected, so that for N = 1000 and N = 1500 we can state that empirical distributions
and model distributions are significantly different. The χ2 goodness of fitness test (gof) does not confirm
a complete match. This effect can be explained by the focusing effect on the action-set size proportionate
deletion in XCS. Currently, overrepresented niches are more likely to encounter deletions whereas currently
underrepresented niches are less likely. The result is a slight focusing effect around the mean also observable
in Figure 2 especially for the case with larger population sizes. Since deletion is proportional to the action
set size estimates as, which are updated iteratively, this additional pressure is noisy and very hard to model.
Nonetheless, the results show that the influence on niche size distribution is minor.

In sum, our statistical analysis confirms the very close match of the theory with the actual empirical
values. When the effects of mutation and crossover are switched off, the results validate the modeled Markov
chain behavior of niche support. The expected mean support is obtained and the resulting niche sizes
are Binomially distributed. The exact fit cannot be rejected in the case of N = 500 according to the
Kolmogorov-Smirnov tests.

6.3 The Influence of Mutation

The introduced Markov chain model does not take into account the impact of mutation and crossover on
the niche size distribution. However, when a representative of a niche is reproduced, mutation may disrupt
the structure so that the offspring may actually not be a representative of the current niche. This disruptive
effect of mutation depends on the type of mutation used as well as on the mutation rate but it is also
dependent on the order of the schema that characterizes a problem niche. Thus, the amount of disruption
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Figure 3: XCS in the 11-multiplexer when θGA = 0. Distributions and corresponding cumulative distributions
of niche sizes for XCS without condensation steps (solid line) and for the model provided by Equation 10
(dashed line) when θGA = 0 and the population sizes are 500, 1000, 1500.

is also problem dependent.

6.3.1 Offspring Disruption due to Mutation

To analyze the effects of mutation in the 11-multiplexer we repeat the previous set of experiments without
the final 50,000 condensation steps. Figure 3a reports (i) with dashed lines the three theoretical distributions
provided by our Markov model (Equation 10) when p = 1/32, and N = 500, N = 1000, N = 1500; (ii) with
solid lines the distributions of niche sizes estimated through the experiments when N = 500, N = 1000, and
N = 1500; as in the previous experiments, the empirical distributions are obtained from 32000 data entries.

As Figure 3a shows, without condensation (crossover and mutation apply) the curves corresponding to
the theoretical distribution and the curves estimated from the experimental data are still highly overlapping.
Since mutation may result in classifier offspring that is not a representative of any niche, the classifier distri-
butions shown in Figure 3a suggest the existence of over-general classifiers that do not belong to any of the
32 niches reported in Table 2 (e.g., 00#00######:0). As a result, the size of the niches in Figure 3a is smaller
than predicted by the model, so that the empirical distributions are shifted to the left. This observation
is confirmed by the empirical cumulative distributions in Figure 3b. As the curves show, when mutation
and crossover are involved the model cumulative distribution functions (CDFs) always underestimates the
empirical cumulative distribution functions (ECDFs) derived from the experiments (Figure 3b).

Table 3 summarizes the statistics collected in the three settings. When mutation and crossover are
involved, the mean of the empirical distributions is significantly different from that of the model, the p-values
for tt and wt are 0. The Kolmogorov-Smirnov tests (columns K+, K, and K−) show that: (i) we accept
the null hypothesis for K+ for all values of N , that is, the ECDF is greater than the CDF (∀x : FXCS(x) ≥
FM (x)); (ii) we can reject the null hypothesis for K that is, the ECDF and the model CDF are significantly
different.

6.3.2 Quantification of Disruptive Events

Can we quantify the observed disruptive effects of mutation and crossover? It seems that two of our assump-
tions are violated when mutation and crossover continue to be applied: (1) Mutation can cause disruption so
that given a representative is chosen for reproduction the offspring may not necessarily be a representative.
(2) Due to this disruption, over-general classifiers stay in the population. Thus, the probability of selecting
a representative for reproduction is smaller than the probability of niche occurrence. Both effects lower the
probability of generating a new niche representative, expressed in the niche reproduction probability p.
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However, mutation and crossover are not only disruptive. Creative effects of mutation and crossover can
be expected in that reproduced classifiers might become representatives of a niche due to specializations
and value variations caused by mutation or due to the recombination of relevant condition substructures.
However, once the problem is learned and mainly representatives are reproduced, the probability of not
selecting a representative for reproduction becomes small. Thus, creational effects of mutation and crossover
diminish since mainly representatives are selected for reproduction. More technically, once the optimal
solution is found, the probability of selecting a representative for reproduction will be close to one so that
the probability of selecting a non-representative and creating a representative out of it will be very small.

Disruptive Mutation. The potentially disruptive effects of mutation depends both (i) on the rate and
type of (e.g., niche or free; see [16]) mutation involved and (ii) on the problem solution structure, that is, the
schema structure of the necessary subsolutions. Mutation is disruptive if a niche representative is selected
and the resulting offspring classifier is not a representative of the current niche anymore. Two cases need
to be distinguished: (1) the resulting classifier becomes a representative of another niche; (2) the resulting
classifier is over-general and thus not a representative of any niche. These disruptive effects depend on the
structure of the problem solution space. Therefore, we now analyze these events for the 11-multiplexer.

In the 11-multiplexer, a selected representative classifier becomes a representative of another niche if its
index attribute is flipped from zero to one or vice versa or if the action is mutated. Since the occurrence
probability for this event is equal for all niches in the 11-multiplexer, the overall p is not influenced by such
an event. However, the classifier may become either over-general or overlapping with another niche by either
generalizing any of the four relevant attributes in the 11-multiplexer or by flipping one of the three address
attributes from zero to one (or vice versa), respectively.

We investigate the effect of mutation for two different types of mutation [16]. The first one is niche
mutation, in which a specialized attribute is always mutated to a don’t care symbol and a don’t care symbol
to the current bit value in the problem instance (as defined in the algorithmic description of XCS in [18]).
The second one is free mutation, in which an attribute is mutated to one of the two other possible values
with equal probability.

In the case of niche mutation, with mutation rate µ, the probability of disruption in the 11-multiplexer
equals 1− (1−µ)4 since the generalization of any of the four relevant bits results in an over-general classifier.
In the case of free mutation, the probability of disruption equals 1−(1−µ)3(1−µ/2) since a mutation of any
of the three attributes results most likely in a classifier that is not a representative and only the generalization
of the index attribute results in disruption. Note that we slightly simplify the analysis in that we disregard
potentially creative effects of mutation by, for example, the mutation of two relevant attributes. Moreover,
we disregard crossover effects. Finally, we disregard specialization effects of mutation, which can create
representatives that are only 1/2aspec times part of a niche where aspec denotes the number of additionally
specialized attributes compared to the corresponding schema.

Probability of Non-Representative Reproduction. The estimation of the probability of selecting a
classifier for reproduction that is not a representative is much harder to derive mathematically. It depends on
the expected number of non-representatives, which depends on the disruptive and creative effects of mutation
and crossover as well as (recursively) on the current number of non-representatives. Moreover, the proba-
bility of selecting a non-representative depends on current classifier fitness values, which directly depend on
classifier age, the taken fitness scaling approach, the dynamics in the population, and the problem sampling.
Thus, it seems nearly impossible to estimate the probability of selecting a representative mathematically
accurately and an approximation is necessary.

However, it is possible to consider the final population and derive the average probability of selecting
a representative for reproduction from that population. To investigate the disruptive effects, we derive the
probability of selecting a representative for reproduction by determining the average fitness proportion of
representatives in the final population for each niche as follows:

∑

cl is representative
.5aspec(cl)cl.F

∑

cl matches schema
.5aspec(cl)cl.F

(11)
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Hereby, a classifier matches a schema if all its specialized attributes correspond to the specialized (non “∗”
symbols) attributes in the schema. The operator cl.aspec is used to determine the number of additionally
specified attributes in the classifier cl, that is, all specialized (non don’t care) attributes in the classifier that
are denoted by a “∗” in the investigated schema. The addition of this proportion assures that the classifiers
that participate only sometimes in the niche under investigation are accounted for appropriately.

By multiplying the probability of selecting a representative with the probability of maintaining the
representative (no disruption due to mutation), we effectively derive the expected additional disruption due
to mutation. Thus, the new probability p of generating an offspring representative can be adjusted by
multiplying it with this probability. Since the expected mean of the binomial distribution equals Np, the
expected mean decreases when additionally considering the probability of selecting a representative and not
disrupting it by mutation.

6.3.3 Experimental Evaluation

To validate the proposed effects of mutation on the sustenance of the final population, we repeat the previous
experiments in the 11-multiplexer for both types of mutation (niche mutation and free mutation) and for
four different types of deletion: (1) random deletion, (2) action set size deletion, (3) random deletion with
the additional fitness bias [37], and (4) action set size deletion with the additional fitness bias [37].

Table 4 reports the results for all eight sets of experiments. For each experiment, Table 4 reports the
derived proportions of mismatch between (i) the mean observed niche support and (ii) the theoretically
derived niche support. In particular, columns “x± s” and “µ± σ” denote the actual and theoretical mean
and standard deviation in the niche size distribution, without considering mutation. Column “mut.maint.”
denotes the (mutation type dependent) probability that mutation is not disruptive; column “sel.maint.”
denotes the probability (derived from the final population using Equation 11) that a selected classifier is
a representative; column “theor.result” is the product of these two probabilities, that is, the probability
that a representative will be reproduced and will not be disrupted; column “empir.result” lists the actual
empirical fraction of the mean of representatives (dividing x by µ), that is, the actual supply of representatives
compared to the mean supply expected by the Markov chain model without considering mutation; column
“t.r./e.r.” denotes the fraction between the theoretical result and the experimental result, that is, the
fraction between the theoretically expected fraction of representatives and the empirically observed fraction of
representatives. This measure effectively denotes the accuracy of our model when we consider the additional
disruptive effects of mutation.

As can be noted, Table 4 shows that if random deletion or action set size-based deletion is applied (as
in the original XCS implementation [49]), the incorporation of disruption via selection and disruption via
mutation yields a near perfect match compared to the observed mean support (column t.r./e.r.). The close
match with the theory clearly confirms the theorized disruptive effects of mutation.

When Kovacs’ [37] additional fitness-based deletion bias is included, the approximation does not hold
anymore. Due to the additional bias of deleting low fitness classifiers, over-general classifiers are detected and
deleted much faster than in the former case. The impact of this effect increases within higher population sizes
since then over-general classifiers are more likely to survive sufficiently long so that fitness-based deletion
can apply. The addition of the action set size estimate bias does not alter this effect significantly.

The results confirm that mutation and offspring selection can disrupt the model approximation. While
mutation depends on problem type, mutation type and mutation rate, classifier fitness estimates and fitness
distributions depend not only on the problem type but also highly on the fitness derivation itself. This
derivation is dependent on population dynamics as well as on the exact choice of parameter settings and
operator implementation. To name a few, fitness estimates depend on the exact choice of offspring parameter
initialization, the learning rate β, the usage of the moyenne adaptive modifiée technique, the type and exact
implementation of subsumption deletion, and the choice of fitness scaling, specified in parameters α, ǫ0, and
ν. Thus, a derivation of the exact influence of the fitness bias in deletion and the additional bias due to the
action set size estimate would not only be highly problem type and problem sampling dependent but also
highly dependent on very particular details of the XCS implementation. Nonetheless, the study of fitness-
based deletion showed that the additional bias is beneficial for the detection of over-general, inaccurate
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Random deletion

m.type N x ± s µ ± σ mut.maint. sel.maint. theor.result empir.result t.r./e.r.
500 12.69± 4.204 15.62±3.89 .8493 .9610 .8162 .8124 1.005

niche 1000 25.92± 5.935 31.25±5.50 .8493 .9792 .8316 .8294 1.003
1500 39.09± 7.275 46.88±6.74 .8493 .9845 .8361 .8340 1.003
500 13.17±4.218 15.62±3.89 .8670 .9730 .8436 .8427 1.001

free 1000 26.74±5.995 31.25±5.50 .8670 .9850 .8540 .8557 .9981
1500 40.27±7.302 46.88±6.74 .8670 .9889 .8663 .8591 1.008

Action set size estimate-based deletion

m.type N x ± s µ ± σ mut.maint. sel.maint. theor.result empir.result t.r./e.r.
500 12.77± 3.660 15.62±3.89 .8493 .9642 .8189 .8176 1.002

niche 1000 26.00± 4.978 31.25±5.50 .8493 .9806 .8329 .8319 1.001
1500 39.16± 5.982 46.88±6.74 .8493 .9855 .8370 .8355 1.002
500 13.23± 3.664 15.62±3.89 .8670 .9742 .8447 .8470 .997

free 1000 26.73± 4.984 31.25±5.50 .8670 .9852 .8542 .8554 .999
1500 40.28± 5.949 46.88±6.74 .8670 .9893 .8666 .8594 1.008

Fitness-based deletion

m.type N x ± s µ ± σ mut.maint. sel.maint. theor.result empir.result t.r./e.r.
500 13.48± 4.303 15.62±3.89 .8493 .9585 .8140 .8624 .9439

niche 1000 28.46± 6.240 31.25±5.50 .8493 .9741 .8273 .9106 .9085
1500 43.71± 7.696 46.88±6.74 .8493 .9790 .8315 .9324 .8917
500 13.67± 4.299 15.62±3.89 .8670 .9728 .8435 .8747 .9642

free 1000 28.52± 6.160 31.25±5.50 .8670 .9828 .8521 .9127 .9336
1500 43.70± 7.653 46.88±6.74 .8670 .9867 .8644 .9323 .9271

Action set size estimate times fitness-based deletion

m.type N x ± s µ ± σ mut.maint. sel.maint. theor.result empir.result t.r./e.r.
500 13.52± 3.709 15.62±3.89 .8493 .9612 .8164 .8654 .9433

niche 1000 28.50± 5.009 31.25±5.50 .8493 .9755 .8285 .9120 .9084
1500 43.73± 6.079 46.88±6.74 .8493 .9799 .8322 .9330 .8920
500 13.70± 3.664 15.62±3.89 .8670 .9734 .8444 .8765 .9634

free 1000 28.52± 5.000 31.25±5.50 .8670 .9835 .8527 .9125 .9344
1500 43.71± 5.967 46.88±6.74 .8670 .9873 .8649 .9324 .9276

Table 4: The derived proportions of mismatch between mean observed niche support and theoretically derived
niche support validate the disruptive effect of mutation with respect to niche support distribution. Columns
x±s and µ±σ denote the actual and theoretical (without considering mutation) mean and standard deviation
in the niche size distribution. Entry mut.maint. denotes the probability that mutation is not disruptive;
entry sel.maint. denotes the probability (derived from the final population using Equation 11) that a selected
classifier is a representative; entry theor.result multiplies the two probabilities deriving the expected fraction
of the mean of representatives for each niche present in the final population; entry empir.result lists the
actual fraction of representatives (dividing x by µ); entry t.r./e.r. denotes the fraction between the expected
fraction and the actually observed fraction of representatives for each niche, effectively denoting the accuracy
of our model when we consider the additional disruptive effects of mutation.

classifiers. The consequent population is more focused on the support of maximally accurate, maximally
general classifiers yielding a niche support that is closer to the mathematically derived support without the
effects of disruptive mutation. Thus, the consideration of the disruptive effects of mutation yields a lower
bound on niche support, which can be improved upon by the means of fitness-based deletion.

6.4 The Influence of the GA Threshold θGA

So far, we assumed that the GA is applied on every step, which was easily accomplished by setting θGA = 0.
To analyze the distribution of niche size in XCS when this hypothesis does not hold, we apply XCS to the
11-multiplexer when θGA = 200 (all other parameters are the same as in the previous experiments) and we
compare the empirical distributions with the distributions predicted by the model. Values of θGA closer to
zero, such as θGA = 25, did hardly show any significant distribution differences in comparison with the runs
when θGA = 0 and are consequently not shown here, but are reported elsewhere [14].

Figure 4a reports the theoretical (dashed lines) and empirical (solid lines) distributions for N = 500,
N = 1000, and N = 1500 and θGA = 200. Figure 4b shows the same results in cumulative distribution form.
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Figure 4: XCS in the 11-multiplexer when θGA = 200. Distributions and corresponding cumulative distribu-
tions of niche sizes for XCS without condensation steps (a,b) and with condensation steps (c,d) (solid lines)
and for the model provided by Equation 10 (dashed lines) for population sizes 500, 1000, 1500 reveal the
strong focusing effect of the restricted GA application.

Figure 4c,d reports the same experiments after crossover and mutation have been turned off for additional
50,000 steps. Table 5 lists the statistics collected for all six settings.

The results show that for high values of θGA, the empirical distributions have a lower standard deviation
than the deviations predicted by the model, both when crossover and mutation are turned on (4a,b), and
when crossover and mutation are turned off for the last 50,000 problems (4c,d). The mean niche size for
XCS (x) and for the model (µ) are quite similar; when mutation and crossover are turned off, the difference
is not statistically significant anymore at least for smaller population sizes (row 4c,d in Table 5). However,
the distribution around the mean is much more focused on the mean than predicted by the model.

When θGA is large, classifier parameters are updated more often between reproductive events, so that the
accuracy estimate provided by the classifier fitness is more precise. More importantly, over-reproduction in
one niche is alleviated with a higher θGA value. Given that a reproductive event occurred in a niche, another
niche reproduction event will not occur before θGA iterations have passed. Thus, if sampling generates
several samples of the same niche by chance in close succession, θGA prevents additional reproductive events
preventing over-reproduction in the niche and consequently avoiding additional niche support decrease of
currently infrequently occurring niches. The reproduction probability is not uniform over niche occurrence
any longer since more frequently occurring niches have a smaller probability of reproduction given niche
occurrence. Thus, a higher GA threshold alleviates potential skews in niche occurrence frequencies.

The statistical analysis confirms the observations. Table 5 shows that when crossover and mutation are
turned off the sample and model mean are not significantly different according to the t-test (tt), when
N = 500 and N = 1000; while when N = 1500 the sample and model mean are significantly different
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fig N x ± s x0.5 µ ± σ bdt tt wt gof K+ K K−

500 15.20 ± 2.34 15.00 15.62 ± 3.89 1.000 0.000 0.000 0.00 0.000 0.000 0.000
4a,b 1000 30.61 ± 3.26 31.00 31.25 ± 5.50 1.000 0.000 0.000 0.00 0.000 0.000 0.000

1500 45.83 ± 4.03 46.00 46.88 ± 6.74 1.000 0.000 0.000 0.00 0.000 0.000 0.000

500 15.62 ± 2.14 16.00 15.62 ± 3.89 1.000 0.923 0.000 0.00 0.000 0.000 0.000
4c,d 1000 31.24 ± 2.91 31.00 31.25 ± 5.50 1.000 0.380 0.231 0.00 0.000 0.000 0.000

1500 46.75 ± 3.57 47.00 46.88 ± 6.74 1.000 0.000 0.808 0.00 0.000 0.000 0.000

Table 5: XCS in the 11-multiplexer when θGA = 200. Statistics for the distribution of niche size depicted in
Figure 4. Entry fig indicates the figure to which the statistics refers to and N is the population size. The
other entries are explained in more detail in Table 1.

according to the t-test but not according to the non-parametric Wilcoxon’s test (wt). In all the experiments
reported the empirical data are compatible with a Binomial distribution (column bdt), although they do not
fit the model (column gof). In addition, in all cases the empirical and model distributions are significantly
different according to the Kolmogorov-Smirnov test (columns K−, K, and K+).

In sum, the higher the GA threshold, the more uniform niche reproduction becomes and the more focused
the classifier niche support distribution becomes. This may prevent XCS from loosing infrequently occurring
niches but also has a negative effect on learning speed since the GA application frequency is decreased
overall. Thus, a larger GA threshold may yield larger classification accuracies with smaller population sizes.
However, to reach this accuracy more learning iterations will likely be required. Seeing these constraints, an
approach that adapts the GA threshold over a learning run may be advantageous.

6.5 Discussion

This section confirmed that the proposed model is able to estimate resulting niche distributions. Despite
several additional assumptions, the data fits the model nearly perfectly when condensation steps are applied,
in which mutation and crossover are switched off. The disagreements in the runs without condensation steps
were explainable by the disruptive effects of mutation. Once the solution is found, mutation is mainly
disruptive. The addition of mutative disruption to the derived theory (by decreasing the probability of
reproduction p by a mutation-dependent factor) was able to account for the influence of mutation on niche
support, as experimentally validated. Crossover showed to have only a minor influence on niche support.
Moreover, we observed benefits of applying fitness-based deletion mechanisms proposed elsewhere [37]. The
mechanism helps in the detection of over-general classifiers for deletion consequently focusing the population
on the accurate, maximally general ones.

We also analyzed the influence of the GA application threshold θGA. The model is correct for small
θGA values. For larger values, the parameter causes additional niching pressure that does not change the
mean but decreases the variance of the niche support distribution. Essentially, the threshold prevents the
over-reproduction in currently frequently occurring niches, ensuring a more balanced niche reproduction and
a consequently more balanced niche support distribution.

The evaluations in this section focused on the problem case in which solutions can be represented by
non-overlapping subsolutions. In the next section we analyze how the model fits when this assumption does
not hold, that is, when subsolutions overlap. In this case, a continuous interaction among the overlap-
ping classifiers can be expected since the classifiers have to compete for fitness resources and reproductive
opportunities.

7 Overlapping Subsolutions

A main assumption in our model is that the required subsolutions in the optimal problem solution [O] do not
overlap. In general, though, subsolutions may overlap and classifiers that are representatives of different but
overlapping niches may have to share their reproductive opportunities with each other. In this section, we
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1 0**0**:0 12 1**1**:1 19 0**0**:1 30 1**1**:0

2 ***000:0 13 *1*11*:1 20 ***000:1 31 *1*11*:0

3 **000*:0 14 11**1*:1 21 **000*:1 32 11**1*:0

4 *0*0*0:0 15 **1111:1 22 *0*0*0:1 33 **1111:0

5 *0*00*:0 16 *111*1:1 23 *0*00*:1 34 *111*1:0

6 *000**:0 17 1*1*11:1 24 *000**:1 35 1*1*11:0

7 0***00:0 18 111**1:1 25 0***00:1 36 111**1:0

8 0*0*0*:0 26 0*0*0*:1

9 00***0:0 27 00***0:1

10 00**0*:0 28 00**0*:1

11 000***:0 29 000***:1

Table 6: Niches for the car3; each niche is represented by a schema and an action.

apply XCS to a problem that causes the evolution of overlapping classifiers and we compare the experimental
results to the proposed model.

7.1 Boolean Carry

The Boolean carry of size k, briefly cark, takes as argument a string of size 2k, representing two binary
numbers of size k, x and y, and returns the carry obtained by the sum x + y. For example, suppose that
k = 3, x =100, and y =101, then car3(100101) returns 1; if x =010 and y =001 then car3(010001) returns
0. More formally, when k = 3, given x = x0x1x2 and y = y0y1y2, the function car3(x0x1x2y0y1y2) is defined
as:

car3 = x2y0y1y2 + x0x2y1y2 + x1x2y0y2 + x0x1x2y2 + x1y0y1 + x0x1y1 + x0y0

Table 6 reports the 36 classifiers that represent the complete optimal solution for the car3. The solution is
clearly overlapping. For example, the schemata 000***:0 and 00**0*:0 overlap, the schemata 1**1**:1

and 111**1:1 overlap, etc.
Solution overlap has several effects. First, the sharing of reproductive opportunities decreases the prob-

ability of reproduction in each niche dependent on its overlap with other niches. Second, the classifiers’
action-set size estimates as overestimate niche sizes and thus may lead to an undesired bias towards delet-
ing niches with stronger overlap. Most importantly, highly overlapping classifiers undergo genetic drift and
consequently are lost more easily. To investigate these effects with respect to the proposed model, we apply
XCS to the Boolean carry of size three, car3, and compare the empirical data with the model.

7.2 Reproduction Probability for Overlapping Niches

To compare the experimental data to the model in the case of overlapping niches we must derive the
reproduction probability p. Due to the overlap, this is difficult since p directly depends both (i) on the
number of overlapping niches and (ii) on the proportion of representatives of the niche under investigation
with respect to the other niches. Nonetheless, it is possible to derive (i) an overall reproduction probability
p0 for all representatives of the “zero niche” comprising all schemata in Table 6 whose specified bits in the
condition part are zero, and (ii) the reproduction probability p1 for all representatives of the “one niche”
comprising all schemata in Table 6 whose specified bits in the condition part are one. It is easy to compute
that the zero niche covers the 9/16th of the overall search space, that is, p0 = 0.56 the one niche covers the
remaining 7/16th of the overall search space, that is, p1 = 0.44
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fig N x ± s x0.5 µ ± σ bdt tt wt gof K+ K K−

400 183.43 ± 14.52 184.00 225.00 ± 9.92 0.000 0.000 0.000 0.00 1.000 0.000 0.000
5a 800 397.23 ± 19.61 397.00 450.00 ± 14.03 0.000 0.000 0.000 0.00 1.000 0.000 0.000

1200 619.78 ± 25.90 620.00 675.00 ± 17.18 0.000 0.000 0.000 0.00 1.000 0.000 0.000

400 167.49 ± 20.52 168.00 225.00 ± 9.92 0.000 0.000 0.000 0.00 1.000 0.000 0.000
5b 800 425.42 ± 21.09 426.00 450.00 ± 14.03 0.000 0.000 0.000 0.00 1.000 0.000 0.000

1200 660.77 ± 27.21 661.00 675.00 ± 17.18 0.000 0.000 0.000 0.00 0.158 0.000 0.000

400 154.69 ± 12.61 155.00 175.00 ± 9.92 0.000 0.000 0.000 0.00 1.000 0.000 0.000
5c 800 351.02 ± 18.63 351.00 350.00 ± 14.03 0.000 0.000 0.000 0.00 0.000 0.000 0.000

1200 529.44 ± 24.89 529.00 525.00 ± 17.18 0.000 0.000 0.000 0.00 0.000 0.000 0.000

400 140.01 ± 14.42 140.00 175.00 ± 9.92 0.000 0.000 0.000 0.00 1.000 0.000 0.000
5d 800 357.62 ± 22.47 359.00 350.00 ± 14.03 0.000 0.000 0.000 0.00 0.000 0.000 0.000

1200 537.80 ± 27.60 538.00 525.00 ± 17.18 0.000 0.000 0.000 0.00 0.000 0.000 0.071

Table 7: XCS in the car3 problem when θGA = 0, N = 400, N = 800, and N = 1200. Statistics for the
distribution of niche size depicted in Figure 5. fig indicates the figure to which the statistics refer to; N is
the population size; refer to Table 1 for the meaning of the other columns.

7.3 Experiments

We apply XCS to the car3 problem with different population sizes (N = 400, N = 800, and N = 1200). The
GA threshold is set to θGA = 0. All other parameters were set as in the previous section. For each value of
N , we ran 5000 trials, each consisting of 100,000 problem instances. From the final population, we compute
(i) the size of the zero niche, by summing up the sizes of all the 22 niches whose schema is described by
zeros, (ii) the size of the one niche, by summing up the sizes of all the 14 niches whose schema is described
by ones.

Figure 5a reports (i) with dashed lines, the three theoretical distributions provided by our Markov model
(Equation 10) when p = 9/16, and N = 400, N = 800, N = 1200; (ii) with solid lines, the size of the zero
niche estimated through the experiments when N = 400, N = 800, and N = 1200. Figure 5b reports the
same results after additional 50,000 condensation steps. Likewise, Figure 5c and Figure 5d compare the
theoretical distributions (dashed lines) to the experimental data (solid lines) for the one niche and p = 7/16.
In Table 7, we report the applied statistics collected from the experiments (see Table 1 for reference).

Overall, the reported results show that the actual distribution of zero and one niches is in fact distributed
around the expected means. However, if condensation is not applied, both distributions are shifted to the
left indicating that the support is smaller than expected. This confirms the disruptive effect of mutation
analyzed for the 11-multiplexer in the previous section. When condensation is switched on, the curves do
approach their expected mean value. For small population sizes (N = 400 and N = 800), some niches are
lost which explains the (e.g., niche or free; see [16])shift to a smaller support. This niche loss is more visible
by analyzing the distribution of each niche separately. For the case of N = 800, Figure 6 reports the niche
size distributions of each of the 36 niches separately. Note that the smallest and most overlapping niches
(**1111, 1*1*11, *111*1, and 111**1) tend to completely lose niche support sometimes (Figure 6c). Since
mutation and crossover are switched off during condensation, a recovery is not possible in the event of a
niche loss shifting the distribution even further to the left as shown in Figure 6d.

In the case of a larger population size (N = 1200), the distributions are slightly shifted to the left for the
zero niches and to the right for the one niches. This observation confirms the additional balancing effect due
to the action-set size estimate based deletion. Shifting both distributions to a balanced niche support level.

The observations confirm our hypothesis that genetic drift may cause niche loss of highly overlapping,
infrequently occurring niches. Although XCS does apply fitness sharing techniques in that fitness reflects
the average relative (shared) accuracy of a classifier, due to the multiple overlaps, the sharing technique
does not seem to be able to prevent the potential loss of a niche. Further theoretical results for competitive,
overlapping niches can be found in [31, 32]. These results shows that overlap becomes relevant only in
strongly overlapping problems. Additionally, advanced niching techniques that can detect overlapping niches
and assure their sustenance might be desirable. Section 11 discusses such options in further detail.

18



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  100  200  300  400  500  600  700  800

P
R

O
B

A
B

IL
IT

Y

NICHE SIZE

EMPIRICAL DATA N=400
MODEL N=400 p=9/16

EMPIRICAL DATA N=800
MODEL N=800 p=9/16

EMPIRICAL DATA N=1200
MODEL N=1200 p=9/16

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  100  200  300  400  500  600  700  800
P

R
O

B
A

B
IL

IT
Y

NICHE SIZE

EMPIRICAL DATA N=400
MODEL N=400 p=9/16

EMPIRICAL DATA N=800
MODEL N=800 p=9/16

EMPIRICAL DATA N=1200
MODEL N=1200 p=9/16

(a) (b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  100  200  300  400  500  600  700  800

P
R

O
B

A
B

IL
IT

Y

NICHE SIZE

EMPIRICAL DATA N=400
MODEL N=400 p=7/16

EMPIRICAL DATA N=800
MODEL N=800 p=7/16

EMPIRICAL DATA N=1200
MODEL N=1200 p=7/16

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  100  200  300  400  500  600  700  800

P
R

O
B

A
B

IL
IT

Y

NICHE SIZE

EMPIRICAL DATA N=400
MODEL N=400 p=7/16

EMPIRICAL DATA N=800
MODEL N=800 p=7/16

EMPIRICAL DATA N=1200
MODEL N=1200 p=7/16

(c) (d)

Figure 5: Distribution of niche sizes for XCS in the car3 (solid line) and for the model provided by Equa-
tion 10 (dashed line) when θGA = 0, deletion is based on the action set size estimate, and the population
sizes are 400, 800, and 1200 classifiers. Plots (a) and (b) report the distribution of niches corresponding to
the zero niche, without condensation, plot (a), and with condensation, plot (b). Plots (c) and (d) report the
distribution of niches corresponding to the one niche, without condensation, plot (c), and with condensation,
plot (d). Statistics for XCS were collected over 5000 experiments.
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Figure 6: XCS in the car3 with the usual action-set plus fitness-based deletion, when N = 800 and θGA = 0.
Plots (a) and (b) report the distribution of niches belonging to the “zero niche”, without condensation, plot
(a), and after condensation, plot (b). Plots (c) and (d) report the distribution of niches belonging to the
“one niche”, without condensation, plot (a), and after condensation, plot (b).
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8 Learning Complexity

The results we reported so far show that our model for niche support in XCS can predict the distribution
of niche sizes for problems involving non-overlapping niches. Effectively, our model provides an asymptotic
prediction of niche support distribution. The model was able to account for mutation affects as well, where the
expected niche support distribution can be derived by the probability of niche occurrence times representative
reproduction times mutation maintenance.

Besides the capability of estimating the expected niche support distribution, the model can be used
to derive a population size bound to ensure that a complete model is sustained with high probability. In
particular, from the probability u0 of having a niche without any representative classifier we now derive a
population-sizing bound that a niche is not lost with an arbitrarily high probability

In essence, our model can approximate the probability that a niche is lost. Using Equation 9, we can
derive a bound for the population size N that ensures with high probability that XCS does not forget
about any problem niche, that is, loose a relevant subsolution. In fact, in Appendix B we derived that the
probability of being in state u0 (which means, that the respective niche was lost) is u0 = (1 − p)N . Thus,
the probability of loosing a niche decreases exponentially with the population size. Given the problem has
2o problem niches, that is, the perfect solution [O] is represented by 2o schemata of order o, the probability

of loosing a niche equates to u0 =
(

1− 1
2o

)N
.

Requiring a certainty threshold θ that no niche will be lost (that is, θ = 1−u0), we can derive a concrete
population size bound as follows:

log(1− θ)

log(1− 1
2o )
≈

log(1− θ)

log(1− p)
≈ −

log(1− θ)

p
< N, (12)

showing that population size N grows logarithmically in the confidence value and linearly in the inverse
of the occurrence probability p, which can be approximated by 2o given uniform problem sampling and
equally sized niches. The bound confirms that once a problem solution was found, XCS is able to maintain
the problem solution with high probability requiring a population size that polynomially grows in problem
complexity and logarithmically in the confidence value.

Alternatively, the result shows that given a certain population size, XCS will maintain a solution that
consists of subsolutions with a minimal occurrence probability p as long as the subsolutions are not severely
overlapping. In other words, the bound suggests that, given a certain population size N , XCS is able to
sustain a complete problem solution with high probability as long as the required problem subsolutions do
not fall below an occurrence probability p.

Thus, although we usually do not know how complex the subsolutions to a problem need to be, the bound
indicates that we are able to sustain all subsolutions that have a minimal occurrence probability p. Given
a uniformly sampled, binary problem space, and given any k-DNF problem in this space, the occurrence of
each subsolution can be bounded by 1/2k. Furthermore, given that there is no severe overlap between the
problem subsolutions, that is, the conjunctions with k literals, the bound shows that XCS can sustain a
problem solution with high probability with a population size that grows logarithmically in the confidence
value and linearly in k. This observation confirms that with respect to solution sustenance, XCS is a PAC
learning system with respect to (only partially overlapping) k − DNF problems. Since the search for a
solution was also shown to be polynomial in confidence, solution complexity, and problem size [16, 15, 13],
the result confirms Wilson’s original XCS learning hypothesis [50].

It might be argued that the disruption due to mutation is not considered in the complexity analysis
and not derivable in the general case. Disruption by mutation may be bounded by the probability that
no mutation occurs in the relevant attributes. Since in k −DNF maximally k attributes are relevant, the
probability of not disrupting offspring via mutation can be bounded by (1 − µ)k and the additional factor
becomes irrelevant for the complexity bound derived in Equation 12. The additional factor of the probability
of selecting a representative given the occurrence of a certain niche is very hard to bound since it depends
on the selection method used as well as on the fitness scaling used. Clearly, stronger fitness pressures caused
by higher fitness scaling rates, such as a smaller scaling value α and a larger ν (see Equation 3 in Section 2),
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or by a more focused selection method, such as set-proportionate tournament selection [17], can decrease
this additional disruptive influence. In the case of set-proportionate tournament selection, the probability
of selecting a representative can be lower bounded by the set-proportion assuming that a representative
is guaranteed to have the highest fitness value in an action set [12]. The set-proportion is usually set to
τ = .4. Consequently, a constant τ needs to be multiplied to the p value in Equation 12, which again does
not influence the overall learning complexity.

9 Related Work

Several previous articles have approached the problem of modeling the behavior of evolutionary systems
with Markov chain analyses including [4, 25, 24, 28, 32, 5, 6]. We now present a brief overview over other
approaches in the literature most related to the path taken in this paper.

Harik et. al. [28] used a simple Markov chain model to derive the probability of deciding well among
competing building blocks. The Markov chain assumed a constant probability of reproduction and deletion
(derived from fitness). Using the result from the random walk literature of how likely it is that a niche is
absorbed (reaching the limit of the Markov chain), a population size model was derived that assured the
probability of a successful evolutionary process with high probability. Albeit similar in the approach, our
Markov chain faces changing deletion probabilities resulting in the observed niche support stabilization.

Horn et. al. [32] developed a Markov chain model for a learning classifier system in which selection and
deletion were applied to the whole population. The work emphasizes the importance of fitness sharing for the
maintenance of partially overlapping classifiers. Also XCS applies fitness sharing to enforce the sustenance
of partially overlapping classifiers. However, the main niching techniques lies in the niche reproduction
in combination with global deletion, as seen in the analysis. Thus, the analysis of Horn et. al. matches
closer to the ZCS classifier system [48], in which reproduction and deletion are applied globally to the whole
population as well.

Bull developed a Markov chain model for single step problems [5] and multistep problems [6] (see also,
[8]). The developed models were restricted to simple one-bit problems and two-step multistep problems.
Moreover, the models investigated the learning progress rather than the convergence and solution sustenance
aspects. In contrast, our niche size distribution model considers solution sustenance and applies to all
problems in which the final solution can be represented with potentially partially overlapping classifiers and
in which each necessary subsolution has an occurrence probability of at least p. Nonetheless, currently our
model is restricted to the single-step, classification domain. In multistep problems, solution sustenance can
be expected to be harder due to the expectable skewed problem space sampling. Advanced exploration
techniques as well as niche support techniques will be necessary to balance sampling and prevent forgetting
of infrequently visited problem subspaces.

10 Summary

In this paper we have investigated the niching capabilities of XCS. We derived a Markov chain model for
niche support in XCS and showed that the support of a niche in XCS can be approximated by a Binomial
distribution over the niche size. In the case of non-overlapping niches, the model agreed to the experimental
evaluations nearly perfectly, even when the disruptive effect of mutation was taken into account.

The experimental evaluations confirmed the focusing effects of action-set size based deletion method and
the thresholded GA application. The action-set size based deletion method adds additional pressure towards
eliminating useless overlapping and over-general classifiers. The thresholded GA application, controlled by
parameter θGA, decreases variance in the distributions and favors less frequently occurring niches. Both
mechanisms are consequently beneficial in maintaining a complete problem solution. However, a large θGA

threshold may actually decrease the initial learning speed. Thus, an adaptive threshold θGA that is set to a
low value early in a run and increases later in the run may be beneficial to speed-up initial learning and to
sustain the final problem solution later.
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The experimental evaluations also showed that mutation causes disruption in the sustenance of the
final population. The estimated disruption caused in the 11-multiplexer was confirmed by experimental
evaluations. Clearly, mutation is necessary to evolve a complete problem solution so that, as in the case
of the parameter θGA, an adaptive mutation parameter approach may be advantageous. Bull et. al. have
worked on a self-adaptive mutation scheme [7, 9, 33]. However, with our knowledge about an initially
necessarily higher mutation rate and a later, smaller mutation rate, it might be advantageous to experiment
with a heuristically adaptive mutation parameter that decreases once the solution was found. On the other
hand, the complexity derivation showed a negligible influence of mutation as long as the mutation rate is
kept small.

In overlapping niches, dependent on the degree of overlap, genetic drift may influence niche sustenance.
For this case, the model may need to be enhanced to account for the resulting genetic drift. However, as
analyzed elsewhere [32], slight overlaps do not have a significant influence on the required final population size.
Nonetheless, the experimental results confirmed that the population sizes need to be set larger when overlap
occurs. Thus, future research should investigate the potential incorporation of other niching techniques, such
as crowding techniques [20, 44, 27], in which the replacement of classifiers is restricted.

Besides our capability of estimating niche size distributions, we were also able to derive a population
size bound that ensures with high probability θ that the complete solution will be maintained, as long as all
niches in the final solution have an occurrence probability of more than p and the niches are not severely
overlapping. We showed that to satisfy this bound, population size needs to grow logarithmically in 1 − θ
and linearly in the inverse of the smallest niche occurrence probability in the problem. If all subsolutions
occur approximately equally frequently, the population size needs to grow linearly in the number of required
subsolutions (that is, classifiers).

From a more global perspective, we saw that niching in XCS is achieved by a reproduction mechanism
that is biased on the niche occurrence frequency in combination with a deletion mechanism that is biased on
niche size. Thus, XCS’s niching mechanism strongly depends on problem sampling. We assumed a uniform
distribution over niche occurrences or an independent probability p of the occurrence of each niche. XCS’s
mechanism may become less stable, once niche occurrences become skewed or history dependent. In essence,
the larger the delay between niche occurrences, the larger the probability that a niche may be lost. Higher
population sizes can alleviate this effect with a necessary growth linear in 1/p where p might be set to the
lowest occurrence probability possible dependent on the history or where 1/p may be set directly to the
maximum expected delay between two occurrences of the same niche.

11 Conclusions

The related work section showed that a niche support analysis is not available for any other classifier system
although the analysis is highly important to ensure complete solution sustenance. Moreover, the analysis is
important to show the dependency of the classifier system on problem subsolution sampling. Any classifier
system that evolves its population online is destined to lose subsolutions if no proper niching technique is
applied. XCS accomplishes proper niching using an occurrence-based selection mechanism in combination
with an approximately random (slightly niche occupation-biased) deletion mechanism. As discussed above,
the deletion mechanism may be further biased to further improve niching in XCS. Such biasing is expected
to be particularly useful in problems in which highly overlapping subsolutions are expected.

Other classifier systems should undergo similar niching analyses. By deriving a reproduction probability
estimate as well as a deletion probability estimate, any niche support behavior can be approximated by
a Markov chain in which states denote the current niche size. Clearly, the probabilities depend on the
particular LCS system at hand. However, if neither the probability of deletion decreases with decreasing
niche occupancy nor the probability of reproduction increases with decreasing niche occupancy, then the
system will be destined to lose important subsolutions due to genetic drift. In the ZCS system [48, 8], for
example, reproduction depends on fitness sharing so that the analysis of Horn et. al. [32] applies. However,
the fitness values need to reflect the dynamics in the population as accurately as possible, which may explain
the necessary high learning rates observed elsewhere [8]. Niching challenges similar to the ones observed for
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XCS are expected in problems in which overlapping subsolutions are required in ZCS.
The modular analysis in this paper revealed that XCS has a very flexible niching mechanism that depends

mainly on niche occurrence frequency. Research is on the way to investigate and enhance this analysis to
other problem domains and other condition representations. Hereby, it becomes increasingly obvious that
the most suitable condition structure as well as the most suitable prediction structure will enable XCS to
find the most accurate and most general problem solution [11, 40]. XCS adapts the provided structures
in such a way that the conditions partition the problem space to ensure maximally accurate predictions.
The derived niche support bound in this paper shows how these partitions are sustained in XCS and it
quantifies the population size required to ensure the sustenance of non- or partially overlapping niches with
high probability.
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A List of Symbols

XCS Parameters

N maximal population size
P# don’t care probability
β learning rate
α, ε0, ν accuracy calculation parameters
θGA threshold that controls GA invocation
µ probability of mutating a condition attribute (or the action)
χ probability of applying the chosen crossover operator
θdel threshold that requires min. experience for fitness influence in deletion
δ fraction of mean fitness below which deletion probability is increased
θsub threshold that requires minimal experience for subsumption

Classifier Parameters

C condition part; in bin. problems, C ∈ {0, 1, #}l

A action part
R reward prediction
ε mean absolute reward prediction error
κ current accuracy
κ′ current relative accuracy
F fitness (in macro classifiers)
as the mean action set size the classifier is part of
ts last time stamp the classifier was part of a GA application set
exp the number of evaluation steps the classifier underwent so far
num the numerosity, that is, the number of micro-classifiers

represented by this (macro-) classifier

Model-Related Parameters

k number of representatives (state k in Markov chain)
rk probability of increasing niche support by one
sk probability of leaving niche support unchanged
dk probability of decreasing niche support by one
p probability of reproducing a representative
µ theoretical mean supply of representatives
σ theoretical standard deviation of supply of representatives
x̄ empirical (sampled) mean supply of representatives
s empirical (sampled) deviation of supply of representatives
θ probability of sustaining a niche
aspec(cl) number of additionally specified attributes in a classifier compared to a schema

Other Notations

[P ] classifier population
[M ] match set
[A] action set
[O] optimal set of classifiers in the sense of [36]
r feedback (reward) received from the environment
P (ai) prediction array estimating the value of action ai
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B Closed-Form Equation

In this section, we develop the closed form equation for the Markov chain in Figure 1. We start from the
following equation, introduced in Section 4:

uk = rk−1uk−1 + skuk + dk+1uk+1 (13)

by replacing the probabilities rk, dk, and sk, with their actual values (see Section 4 for details):

rk = p

(

1−
k

N

)

sk = (1− p)

(

1−
k

N

)

+ p
k

N

dk = (1− p)
k

N

we obtain,

[

p

(

1−
k

N

)

+
k

N
(1− p)

]

uk = (1− p)

(

k + 1

N

)

uk+1 + p

(

1−
k − 1

N

)

uk−1

finally, by dividing by (1− p)uk−1, we derive the following equation:

[

p

1− p
(N − k) + k

]

uk

uk−1
= (k + 1)

uk+1

uk−1
+

p

1− p
(N − k + 1) (14)

To derive a closed-form solution for probability uk we first use Equation 14 to derive a closed-form equation
for the ratio uk

u0
. Next, we use the equation for uk

u0
and the condition

∑N
k=0 uk = 1, to derive the closed-form

solution for uk.

B.1 Closed-form Equation for uk/u0

As the very first step, we write the following fixed point equation for the transitions between state 0 and
state 1:

u0 = s0u0 + d1u1.

(15)

By substituting the values of s0 and d1 we obtain:

u0 = (1− p)u0 + (1− p)
1

N
u1,

pu0 = (1− p)
1

N
u1,

from which we derive equation:

u1

u0
=

p

1− p
N. (16)

To derive the equation for u2/u0 we start from Equation 14 and set k = 1:

[

p

1− p
(N − 1) + 1

]

u1

u0
= 2

u2

u0
+

p

1− p
N,
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so that

u2

u0
=

1

2

[(

p

1− p
(N − 1) + 1

)

u1

u0
−

p

1− p
N

]

.

We now replace u1/u0 with Equation 16:

u2

u0
=

1

2

[(

p

1− p
(N − 1) + 1

)

u1

u0
−

p

1− p
N

]

=
1

2

[(

p

1− p
(N − 1) + 1

)

p

1− p
N −

p

1− p
N

]

=
1

2

[

p

1− p
(N − 1)

p

1− p
N

]

=
N(N − 1)

2

(

p

1− p

)2

=

(

N

2

)(

p

1− p

)2

(17)

This leads us to the hypothesis that

uk

u0
=

(

N

k

)(

p

1− p

)k

, (18)

which we prove by induction. Using Equation 18, we can first derive that:

uk+1 =
N − k

k + 1

p

1− p
uk (19)

uk =
N − k + 1

k

p

1− p
uk−1 (20)

uk−1 =
1− p

p

k

N − k + 1
uk (21)

With Equation 14 substituting Equation 21 as the inductive step, we now derive

uk+1 =

((

p
1−p

(N − k) + k
)

uk

uk−1
− p

1−p
(N − k + 1)

)

uk−1

k + 1
(22)

=

(

p
1−p

)2
(N−k)(N−k+1)

k
uk−1

k + 1
(23)

=
N − k

k + 1

p

1− p
uk, (24)

which proves the hypothesis.

B.2 Derivation of u0

To derive a closed-form for uk from the equation for uk/u0, we use the subsidiary condition:

N
∑

k=0

uk = 1 (25)
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We divide both terms by u0

N
∑

k=0

uk

u0
=

1

u0
,

(26)

where

N
∑

k=0

uk

u0
=

N
∑

k=0

(

N

k

) (

p

1− p

)k

=

[

N
∑

k=0

(

N

k

)

pk(1− p)N−k

]

1

(1− p)N
,

where the term “
∑N

k=0

(

N
k

)

pk(1− p)N−k” is equal to “[p + (1− p)]
N

”, that is 1, so that:

N
∑

k=0

uk

u0
=

1

(1− p)N

(27)

and accordingly,

u0 = (1− p)N . (28)

B.3 Closed-Form Equation for uk

By combining Equation 18 and Equation 28, we derive the closed-form equation for uk as follows:

uk =

(

N

k

)(

p

1− p

)k

u0

=

(

N

k

)(

p

1− p

)k

(1− p)N

=

(

N

k

)

pk(1− p)N−k

Note that the same derivation is possible noting that the proposed Markov chain results in an Engset
distribution [35].
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