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ABSTRACT
Recently, studies with the XCS classifier system on Boolean
functions have shown that in certain types of functions sim-
ple crossover operators can lead to disruption and, conse-
quently, a more effective recombination mechanism is re-
quired. Simple crossover operators were replaced by re-
combination based on estimation of distribution algorithms
(EDAs). The combination showed that XCS with such
a statistics-based crossover operator can solve challenging
hierarchical functions more efficiently. This study elabo-
rates the gained competence further investigating the cod-
ing scheme for the EDA component (BOA in our case) of
XCS as well as performance in randomly generated Boolean
function problems. Results in hierarchical Boolean functions
show that the originally used 2-bit coding scheme induces
a certain learning bias that stresses additional diversity in
the evolving XCS population. A 1-bit coding scheme as
well as a restricted 2-bit coding scheme confirm the sus-
pected bias. The alternative encodings decrease the unnec-
essary bias towards specificity and increase performance ro-
bustness. The paper concludes with a discussion on the
challenges ahead for XCS in Boolean function problems as
well as on the implications of the obtained results for real-
valued and multiple-valued classification problems, multi-
step problems, and function approximation problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search; I.2.6 [Artificial Intelligence]:
Learning

General Terms
Algorithms

Keywords
Learning Classifier Systems, XCS, Reinforcement Learning,
Bayesian Networks
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1. INTRODUCTION
The XCS classifier system, introduced by Wilson [28], may

be the currently most well-understood learning classifiers
system (LCS). Recent applications have shown that XCS is
able to solve real-world classification problems effectively [1,
2]. Analyses in Boolean function problems suggest that XCS
can learn a slightly restricted class of k-DNF problems effi-
ciently and reliably [10, 8], confirming previous conjectures
derived from experimental analysis [29].

In hierarchically structured Boolean function problems,
however, it was shown that simple crossover operators may
disrupt the learning process in XCS. The enhancement of
XCS with techniques borrowed from estimation of distribu-
tion algorithms (EDAs) [22, 20, 26] showed to prevent dis-
ruption and support an efficient propagation of lower level
building block structures [11]. Hereby, a Bayesian network is
built, which reflects the statistical classifier structure distri-
bution in XCS’s population. The model is used to generate
or optimize classifier offspring in local problem niches (that
is, match sets or action sets).

Despite this first successful and efficient replacement of
simple crossover operators with statistics-based recombina-
tion operators, it remained unclear, which structural depen-
dencies of the problem are actually modeled by the Bayesian
network. Additionally, the structural model was formed us-
ing a 2-bit encoding of the ternary classifier condition alpha-
bet (specifying 0, 1, or “don’t care”). This two-bit encoding,
however, can induce additional diversification and special-
ization bias in the XCS learning process.

This paper investigates the influence of this encoding fur-
ther and explores alternatives. First, we experimentally an-
alyze the coding bias showing that it is mainly disruptive,
except for in some specific problem types. Thus, alternative
encodings are proposed and evaluated on a diverse collection
of Boolean functions. The results show that the alternative
encodings alleviate the original bias still yielding efficient
recombination. Additionally, the performance results sug-
gest that the Bayesian network mainly models the low-order
problem dependencies.

Besides the coding issue, it is still under investigation how
large the subset of problems is in which efficient recombina-
tion is necessary to learn effectively. Thus, we then evaluate
XCS on a collection of randomly generated k-DNF prob-
lems comparing performance without and with competent
crossover application.



2. XCS-BOA IN A NUTSHELL
The XCS classifier system was created by Stewart W. Wil-

son [28, 29]. XCS is a learning classifier system (LCS) [16,
18] that evolves a set of rules (i.e. a population of classifiers)
that represents the problem solution. The solution specifies
the expected payoff for each possible action (or classifica-
tion) given a problem instance. In essence, XCS is designed
to evolve a complete, maximally accurate, and maximally
general representation of the optimal problem solution. As
all Michigan-style LCSs, XCS learns iteratively interacting
with an outside environment (such as the classification prob-
lem) receiving problem instances, proposing suitable actions
(or classifications), and receiving corresponding feedback in
the form of real-valued reward.

While XCS was mainly applied to single-step classifica-
tion problems including real-world datamining problems [1,
2, 6, 9] as well as multi-step problems [7] recent system
enhancements have shown that XCS can be modified to ef-
ficiently solve function approximation problems [30, 5] as
well as approximation problems involving real-valued ac-
tions [31]. Thus, XCS is a very flexible learning mechanism
for which application success depends on efficient classifier
representation, the genetic operators, and the approxima-
tion techniques employed.

This section introduces XCS as well as the enhanced
XCS version with a recombination mechanism based on the
Bayesian optimization algorithm (BOA) [25, 24]. Due to
space restrictions, the introduction is brief. The interested
reader is referred to the algorithmic description on XCS [12]
as well as a detailed treatise on the BOA integration [11].

2.1 XCS Introduction
Since the analysis herein focuses on Boolean classification

problems, XCS is introduced as a pure classification system
in which no reward propagation is necessary.

2.1.1 Problem Definition
We define a classification problem as a set of problem in-

stances X = {0, 1}l with length l. Each problem instance
S ∈ X is thus characterized by l binary features. The tar-
get concept assigns each problem instance a corresponding
class A ∈ {1, 2, ..., n}. Instances are generated at random
from X according to some probability distribution D. The
investigated problems herein are uniformly distributed over
all 2l possible problem instances. Problem instances are
iteratively presented to XCS. In response to the resulting
classification, the problem provides scalar reinforcement r
reflecting the correctness of the classification. Reward r = 0
indicates incorrect classification while a non-null constant
reward (here r = 1000) indicates correct classification.

2.1.2 Knowledge Representation
Each classifier in the population [P ] consists of five ma-

jor attributes: (1) the condition part C specifies when the
classifier matches; (2) the action part A specifies the action
(or classification); (3) the reward prediction R estimates the
average reward received given conditions C executing action
A; (4) prediction error ε estimates the mean absolute devi-
ation of the reward prediction; (5) fitness F estimates the
average relative accuracy of the classifier. In the problem
setting considered here, conditions are strings of l symbols
in the ternary alphabet {0, 1, #} (C ∈ {0, 1, #}l) where the
symbol # (called don’t care) matches both zero and one.

2.1.3 Classifier Evaluation
Given the current problem instance S, XCS forms a match

set [M ] consisting of all classifiers in [P ] whose conditions
match S. The match set [M ] essentially represents the
knowledge about the current problem instance. To decide
on the classification, fitness-weighted reward predictions are
formed for each possible classification with respect to the
classifiers in [M ]. After the execution of the chosen classi-
fication A, and the resulting reward R, an action set [A] is
formed consisting of all classifiers in [M ] that specify the cho-
sen action A. Parameters R, ε, and F of all classifiers in [A]
are then updated with an iterative gradient approach using
the Widrow-Hoff delta rule [27]. Hereby, the learning rate
β controls the speed of parameter adaptation. The reward
prediction R essentially estimates the mean reward received
when executing specified action A in the problem subspace
specified by condition C. The estimated error ε approxi-
mates the mean absolute deviation of the reward prediction
R. Finally, fitness F estimates the scaled, mean, relative
accuracy of the classifier derived from the current reward
prediction error ε with respect to competing classifiers.

2.1.4 Rule Evolution
The initial population [P ] is usually empty. Given a prob-

lem instance and no classifier in [P ] matches, XCS applies a
covering mechanism that generates a classifier for each pos-
sible classification. Covering classifiers match the problem
instance and have an average predefined specificity (1−P#).

The genetic algorithm (GA) is the main rule structuring
component. Because classifier fitness estimates the accu-
racy of the reward prediction, the GA favors the evolution
of classifiers that provide an accurate prediction of the ex-
pected payoffs. The genetic algorithm used is a steady-state
niched genetic algorithm [13]. Given the GA is applied in
a certain problem iteration (controlled by the GA thresh-
old θGA), two classifiers are selected from the current action
set [A] maximizing fitness. The introduction of tournament
selection with a tournament size proportionate to the cur-
rent action set size strongly increased the noise-robustness
of the system [9]. Offspring classifiers are crossed over with
probability χ, mutated with probability µ, and inserted in
the population. To keep the population size constant, two
classifiers are deleted from the population. Additionally, a
subsumption-deletion mechanism is applied that favors more
general, accurate, reliable (low error ε) classifiers over more
specialized offspring classifiers.

2.2 Recombination with Bayesian Networks
For recombination to be useful in XCS, crossover must

effectively combine groups of features that represent impor-
tant sub-structures of the desired maximally accurate, max-
imally general problem solution. While features may be pro-
cessable independently in some problems, in other problems
it is important that recombination does not destruct impor-
tant sub-structures but rather detects such sub-structures
in order to prevent their disruption and enforce their effec-
tive juxtaposition. As an example of such difficult prob-
lems, consider hierarchical classification problems in which
sub-problems are evaluated on a lower level and their solu-
tions are combined yielding the higher level problem input.
Figure 1 shows such a two-level hierarchy with a parity (or
XOR) problem at the lower level and the 6-multiplexer prob-
lem at the higher level.
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Figure 1: Two level hierarchy demanding efficient
recombination in XCS.

Applications of XCS to difficult hierarchical problems
showed that simple crossover operators can be disruptive
preventing the learning of a successful problem solution [4].
Enhancements show that XCS with the recombination op-
erator based on the extended compact GA [14] or BOA [25]
can solve the problems efficiently [4]. Particularly, the en-
hanced system XCS-BOA builds a Bayesian network model
of the currently most successful classifiers in the XCS pop-
ulation. The model is then used to generate or optimize
condition and action of classifier offspring, effectively replac-
ing the previously applied simple crossover operators. Since
XCS generates classifiers in action sets, the model needs to
be adjusted to the probability distribution in the current
action set.

Several settings were investigated to generate classifier off-
spring: First, classifiers may be directly sampled from the
model using probabilistic logic sampling (PLS) [15]. In PLS
the variables are ordered topologically and values are gen-
erated following the topological order. As a result, once the
value of a variable xi is to be generated, its parents Πi are
assured to have been generated already. Thus, the probabil-
ities of different values of xi can be directly extracted from
the conditional probability table for xi using the known val-
ues of Πi. To ensure that the offspring is biased to the
current action set, the model is adjusted by adapting the
probability values in the model to the current action set.
This is accomplished by selecting (with replacement) a cer-
tain number of classifiers (here: 20) from the action set (as
for normal offspring selection) and using the probability dis-
tribution of these classifiers to adjust the model parameters
(conditional and marginal probabilities).

Alternatively, selected offspring may be optimized by us-
ing a Markov-chain Monte Carlo method (MCMC) [23] to
update the structure of a selected classifier probabilistically
based on the model. MCMC applies random bit-flips to the
binary representation of the classifier (see below) and de-
termines the likelihood of the classifier structure before and
after the flip using the probabilistic model. A flip is main-
tained probabilistically by a probability of lf/(lf +ln), where
lf denotes the likelihood of the classifier structure after the
flip and ln the one before the flip. To avoid zero likelihoods,
all conditional probabilities are linearly normalized to values
ranging from 0.05 to 0.95.

Due to the binary encoding of the model, classifiers need
to be translated into a binary representation. In [11], each
attribute was encoded by two bits: One bit specifies if the
attribute is specific (either 0 or 1) or general (#-symbol). In
the former case, the second bit specifies the actual classifier
value. For example, the classifier condition C1 = 0## may
be encoded by 001011 where the first two bits specify that
the first condition attribute is 0 and the third and fifth bits
specify that the second and third condition attributes are
don’t cares. The values of the fourth and sixth bits are
essentially meaningless and are chosen uniformly randomly.

While this coding choice emphasizes specificity, another
coding choice recently proposed in [21] rather emphasizes
the values of an attribute: Two bits encode an attribute,
each bit stands for one possible value of the attribute (that
is, 0 or 1) and accepts the value if set. Thus, two ones
represent a #-symbol whereas two zeros are meaningless.

3. CODING CONSIDERATIONS AND
VARIATIONS

We now consider several alternative encodings and the
resulting offspring generation biases.

3.1 Learning Disruption with 2-Bit Encoding
The chosen two-bit encoding induces a certain offspring

bias in XCS classifiers. In fact, the encoding enables the
generation of offspring that does not match the current ac-
tion set. Assuming that the model probabilities are updated
for the problem instance 011 using the two (matching) clas-
sifiers with conditions C1 = 0##, encoded by e.g. 001011

and C2 = 01#, encoded by e.g. 000111, offspring may be
generated encoded by 000011, which translates into condi-
tion Co = 00#. The random encoding of the # symbol in
C1 causes the generation of a zero in the second attribute of
Co so that the offspring does not match the current prob-
lem instance. This cannot happen with any simple crossover
operator. The consequent potentially overly diverse popu-
lations may result in learning disruption.

Such disruption becomes imminent in the 37-multiplexer
problem. The multiplexer problem is a problem in which k
address bits encode the solution position in the 2k remain-
ing value bits of the problem. In the 37-multiplexer prob-
lem, k = 5. Figure 2 compares XCS with simple uniform
crossover with XCS/BOA with offspring sampling (setting
50/0 - selecting 50 classifiers to set the local probabilities in
the Bayesian model) and offspring adaptation (setting 10/18
- selecting 10 classifiers to set local probabilities and trying
18 random bit flips). The results show that when using a
two-bit encoding, XCS/BOA is outperformed by XCS with
simple crossover. Note that the 10/18 setting is much less
disruptive since hereby the induced diversification bias is
much weaker.

3.2 Non-disruptive Encodings
We now investigate several restricted encodings, in which

the recombination operator cannot generate offspring that
does not match the current problem instance.

3.2.1 1-Bit Specific/General Encoding
Instead of giving XCS a choice of which value a specified

condition attribute should take, we can tightly constrain
that value to the current value in the problem instance.
Thus, each condition attribute may be simply coded by one
bit that indicates if the attribute is specific or general. If
the offspring code generated by sampling from the Bayesian
model, or applying MCMC to a selected offspring classifier,
specifies a specific attribute, then the attribute of the clas-
sifier simply is set to the corresponding attribute in the cur-
rent problem instance. For example, given problem instance
0110, and classifier offspring code 1100 (where 1 specifies
don’t care), the corresponding unique classifier condition is
##10.
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Figure 2: The 2-bit encoding of the classifier model
may lead to learning disruption.
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Figure 3: The 1-bit encoding prevents the encoun-
tered disruption.

Figure 3 shows performance with this encoding in the 37
multiplexer problem comparing XCS/BOA with XCS with
uniform crossover. XCS/BOA now performs equally well.

3.2.2 Restricted 2-Bit Encoding
The 1-bit encoding disables the representation of depen-

dencies between actual classifier values instead of classifier
specificities (or generalities, that is, don’t care symbols). It
may be that a 2-bit encoding may be even more useful for
the evolutionary progress. Thus, we re-use the same 2-bit
encoding as before but forbid offspring generation that does
not match the current problem instance. If such an offspring
is generated by the model, then the mismatching attributes
are flipped to the other binary value. For example, if the 2-
bit encoding generates offspring code 000011 given problem
instance 011, the resulting condition will be set to 01#.

Figure 4 shows that the restricted 2-bit encoding again
does not cause the previously observed disruption. How-
ever, performance does not improve in comparison to the
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Figure 4: The restricted 2-bit encoding prevents the
encountered disruption.

1-bit encoding. The additional bit is of no use in the 37
multiplexer problem. Nonetheless, performance of the sim-
ple crossover mechanism is matched.

3.2.3 Further Multiplexer Results
Besides the performance curves, population sizes (the

number of macro-classifiers, that is, different classifiers in
the population) can reveal how well the population is com-
pressed respecting the optimal solution. Figure 5 shows
the population sizes of XCS with uniform crossover as well
as the diverse codings within XCS/BOA. It can be seen
that very early in the run, the XCS/BOA application re-
sults in a more diverse population regardless of the encod-
ing used. However, the 1-bit and restricted 2-bit encodings
enable XCS/BOA to converge quickly to the optimal solu-
tion. Hereby, the differences between the two encodings are
marginal. In the unrestricted 2-bit encoding diversity re-
mains larger and convergence is slower, which indicates the
suspected disruptive effects caused by the encoding.

As a final challenge, we compared the various XCS/BOA
combinations in the 70 multiplexer problem (k = 6). Fig-
ure 6 suggests that with increasing population size, the 1-bit
encoding becomes increasingly more effective. Early in the
run, the 1-bit encoding provides a more directed evolution-
ary pressure towards more accurate classifiers - most likely
propagating the specialization of the k address bits. Late
in the run, though, when the dependency of the address
bit values and the corresponding address location become
more important for the successful detection of the accurate,
maximally general classifiers, the restricted 2-bit encoding
enables faster convergence.

4. HIERARCHICAL CLASSIFICATION
PROBLEMS

The original motivation for the introduction of the com-
petent crossover operator was due to the observation that
simple crossover operators can be disruptive in hierarchical
classification problems [11]. It was shown that model-based
recombination operators can solve these challenging prob-
lems. What remains to be shown is whether the model re-
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ally supported the evolutionary process or, accidentally, the
2-bit encoding yielded a sufficient bias in the right direction
on its own.

Figure 7 shows that also when using the 1-bit and re-
stricted 2-bit encodings XCS/BOA learns competitively in
the hierarchical 3-parity, 6-multiplexer problem. compared
to the parity-block-structure informed building block-wise
uniform crossover (BB-wise X). Although performance is not
quite matched, system behavior shows that the model must
have detected and recombined problem substructures. Runs
without recombination are clearly outperformed as well as
runs with uniform crossover, which is highly disruptive in
these problems.

Runs with an even lower mutation rate (µ = .001) show
that the lack of diversification and the resulting special-
ization pressure is missing in the system, delaying learning
(Figure 8). The problem is that the diversity in the popu-
lation is not high enough and mutation alone is too weak to
introduce sufficient specialization/diversification pressure.
Thus, the supply of lower order building blocks (here: parity
blocks) is insufficient for fast learning essentially facing the
schema challenge [10].

To further determine if XCS/BOA is able to exploit the
additional value information contained in the restricted 2-bit
encoding, we performed runs in the x,y-biased multiplexer
introduced in [10]. This function combines multiple multi-
plexer functions by having one multiplexer function with x
address bits decide on which biased multiplexer with y ad-
dress bits is executed. The challenge in this function is that
each multiplexer needs to be learned independently from
each other. The x address bits decide which one of the bi-
ased multiplexers is currently relevant. Although one might
suspect that the additional information contained in the 2-
bit encoding is beneficial in this case, the results show that
actually the 1-bit coding yields superior performance in this
problem (Figure 9). The 2-bit encoding seems to prevent
an efficient coding of the dependencies, possibly also due to
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duced by the original 2-bit encoding is slightly ad-
vantageous in hierarchical problems.

the size of the model. The major drawback here, however,
seems to be the lack of diversification in the population. The
algorithm only executes 18 random bit flips which might not
be enough in these biased multiplexer problems where the
problem lengths range from l = 73 up to l = 84. Within
the restricted 2-bit encoding, 18 flips actually affect only 9
bits (on average) providing an alternative explanation for
the observed decrease in learning efficiency.

5. RANDOM K-DNF PROBLEMS
Apart from the typically investigated multiplexer and hi-

erarchical classification problems, the question arose how
well XCS will do in general kDNF problems. Trusting XCS
theory, we know that XCS is able to evolve a complete and
accurate problem solution with a population size and iter-
ation time requirement that is polynomial in problem com-
plexity as long as sufficient fitness guidance is available and
the solutions are sufficiently non-overlapping [8].

Thus, we now evaluate XCS and XCS/BOA performance
on randomly generated kDNF problems. We are interested
in whether XCS is able to evolve a near-complete problem
solution reliably. Moreover, we are interested in comparing
the learning speed and accuracy of different XCS variants in
the randomly generated problems. Finally, we are interested
in the influence of crossover and the model-building-based
recombination operator.

Table 1 shows performance of XCS without and with uni-
form crossover as well as XCS/BOA with 1-bit and (un-
restricted) 2-bit encoding, sampling from the probabilistic
model (setting 20/0) or applying MCMC to reproduced off-
spring (setting 20/10). The performance deviations show
that the ten randomly generated problems are equally diffi-
cult for XCS. Deviations are small. A control of the maxi-
mum and minimum performance values (not shown) confirm
that none of the maxima/minima deviated from the average
performance values more than three standard deviations.
Thus, the randomly generated kDNF problems are equally
difficult to XCS.

Comparisons between the different settings show that in
these randomly generated problems crossover is not neces-
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sarily useful. In fact, XCS with uniform crossover performs
worse than XCS without crossover indicating the disruptive
effects of recombination. Further analysis of classifier pop-
ulations showed that although the specificity in the popula-
tion is generally lower with crossover application, the popu-
lation size (number of different classifiers) is actually larger.
This confirms the hypothesized crossover disruption: Sim-
ple uniform crossover tends to combine overlapping clauses
in the kDNF problem. The combination yields a partially
accurate classifier that results in a blow up of population
size but hinders the evolution of maximally accurate classi-
fiers. In the XCS/BOA settings, the 1-bit encoding is again
superior to the (unrestricted) 2-bit encoding. Moreover,
MCMC yields higher learning performance preventing dis-
ruption and propagating important classifier substructures.
The setting with larger population size (N = 8000) shows
that a larger population size clearly beats all other settings
in performance, confirming that reproductive opportunities
and even more so solution sustenance are a challenging prob-
lem in these highly overlapping kDNF problems.

6. SUMMARY AND CONCLUSIONS
This study showed that the substitution of simple

crossover operators with enhanced statistics-based recombi-
nation operators yields robust learning in diverse Boolean
function problems. Even in randomly generated k-DNF
problems accurate performance was achieved in a wide range
of settings. However, we also saw that in larger random
k-DNF problems, additional niching techniques may be re-
quired to ensure complete convergence to the accurate, max-
imally general target solution (represented in the optimal
population [O] in Kovacs’ terms [19]).

The replacement of the simple crossover with building and
sampling probabilistic models showed to be particularly use-
ful in hierarchical problems. The additional bias induced
by the originally used unrestricted 2-bit coding of classifier
condition attributes showed to be useful in highly symmet-
rically structured Boolean function problems, such as the
parity problem, and hierarchical problems involving parity
blocks. However, the encoding can be disruptive in other



Av.& Dev. Perf. in 10 Random kDNF Problems with l=20, k=5, and 22 clauses

5 10 20 40 60 80 100 120 150 200 steps (1000s)

N=4000: XCS/BOA, 1-bit, Setting 20/0
0.63070 0.67776 0.70678 0.76164 0.80792 0.84224 0.86396 0.88430 0.90000 0.91710 Averages

0.02158 0.01890 0.01986 0.02272 0.02035 0.02530 0.02195 0.02180 0.01864 0.01733 Deviations

N=4000: XCS/BOA, 1-bit, Setting 20/10
0.63858 0.69306 0.74166 0.82906 0.88094 0.90612 0.92492 0.93386 0.94572 0.95390 Averages

0.02078 0.02112 0.01877 0.01424 0.01597 0.01437 0.01170 0.01014 0.01242 0.00727 Deviations

N=4000: XCS/BOA, 2-bit, Setting 20/0
0.62806 0.66512 0.67890 0.69394 0.71676 0.73298 0.75060 0.77046 0.78650 0.81458 Averages

0.02257 0.01834 0.01823 0.01686 0.02115 0.02049 0.02083 0.02253 0.02451 0.02982 Deviations

N=4000: XCS/BOA, 2-bit, Setting 20/10
0.63170 0.68734 0.73666 0.81720 0.86752 0.89868 0.91854 0.93058 0.94086 0.95210 Averages

0.02506 0.01872 0.02140 0.01525 0.01804 0.01388 0.01381 0.01515 0.01492 0.01290 Deviations

N=4000: XCS with uniform Xover
0.63768 0.68434 0.73352 0.80328 0.85572 0.88168 0.90058 0.91050 0.92732 0.93842 Averages

0.02392 0.01964 0.01865 0.01917 0.01957 0.01983 0.01767 0.01496 0.01036 0.00980 Deviations

N=4000: XCS without Xover
0.62228 0.67842 0.74496 0.82151 0.87273 0.90762 0.92375 0.93486 0.94589 0.95392 Averages

0.01924 0.02351 0.01818 0.01476 0.01253 0.01287 0.01050 0.00927 0.00780 0.00883 Deviations

N=8000: XCS/BOA, 1-bit, Setting 20/10
0.63580 0.69834 0.79575 0.91700 0.95997 0.97293 0.97907 0.98185 0.98277 0.98189 Averages

0.01921 0.01810 0.00937 0.00867 0.00748 0.00464 0.00378 0.00401 0.00249 0.00342 Deviations

Table 1: In randomly generated kDNF problems, crossover is mainly disruptive. Proper XCS/BOA combi-
nations are as effective as runs with mutation only. Different problem instances appear equally difficult for
XCS seeing the low standard deviation values.

Boolean functions. The proposed specificity-focused 1-bit
encoding or the 2-bit encoding with the restriction of gen-
erating matching offspring yield more robust performance.
The marginal performance differences between 1-bit and 2-
bit encoding additionally suggest that the model mainly en-
codes lower level dependencies focused on specificity rather
than on the actual values of specified condition attributes.
Thus, a 1-bit specific/general encoding of classifier condi-
tions may be sufficient for an efficient recombination opera-
tor in XCS.

With respect to the slightly inaccurate results in the in-
vestigated k-DNF problems, it should be kept in mind that
XCS is designed to evolve a complete problem solution by
specifying classifications for both sides: correct classifica-
tions and incorrect classifications. In this sense, XCS does
not only strive to learn the clauses of a k-DNF problem
but also the potentially much more complex subspace of the
negation of the clauses. Thus, the problem XCS learns is
essentially harder. Other approaches using a default rule
[17] for the incorrect classifications may be worth exploring.
Similarly, advancements within the ZCS system [28, 3] may
yield a more robust solution than XCS since ZCS only learns
the correct classifications (dependent on the reward scheme
used). Future research needs to shed further light on the
niching constraints in XCS induced by the fitness sharing
mechanism as well as the action set-based reproduction.

Acknowledgments
This work was support by the European commission con-
tract no. FP6-511931 is acknowledged. Additional support
came from the National Science Foundation under NSF CA-

REER grant ECS-0547013 and the University of Missouri
under the Research Board and Research Award programs.

7. REFERENCES
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