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Abstract. Research on anticipatory behavior in adaptive learning
systems continues to gain more recognition and appreciation in various
research disciplines. This book provides an overarching view on antici-
patory mechanisms in cognition, learning, and behavior. It connects the
knowledge from cognitive psychology, neuroscience, and linguistics with
that of artificial intelligence, machine learning, cognitive robotics, and
others. This introduction offers an overview over the contributions in
this volume highlighting their interconnections and interrelations from
an anticipatory behavior perspective. We first clarify the main foci of
anticipatory behavior research. Next, we present a taxonomy of how an-
ticipatory mechanisms may be beneficially applied in cognitive systems.
With relation to the taxonomy, we then give an overview over the book
contributions. The first chapters provide surveys on currently known an-
ticipatory brain mechanisms, anticipatory mechanisms in increasingly
complex natural languages, and an intriguing challenge for artificial cog-
nitive systems. Next, conceptualizations of anticipatory processes in-
spired by cognitive mechanisms are provided. The conceptualizations
lead to individual, predictive challenges in vision and processing of event
correlations over time. Next, anticipatory mechanisms in individual de-
cision making and behavioral execution are studied. Finally, the book
offers systems and conceptualizations of anticipatory processes related
to social interaction.

1 Introduction

The presence of anticipatory mechanisms and representations in animal and
human behavior is becoming more and more articulated in the general, inter-
disciplinary research realm of cognitive systems. Hereby, anticipatory processes
receive different names or are not mentioned explicitly at all. Commonalities be-
tween these processes are often overlooked. The workshop series “Anticipatory
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Behavior in Adaptive Learning Systems” (ABiALS) is meant to uncover these
commonalities, offering useful conceptualizations and thought-provoking inter-
connections between the research disciplines involved in cognitive systems
research.

After the publication of the first enhanced post-workshop proceedings volume
in 2003 [13], research has progressed in all involved areas. Somewhat unsur-
prisingly, neuroscience and cognitive psychology are continuously revealing new
influences of anticipations in cognition and consequent behavior and learning.
Individual and, even more strongly, social behavior seem to be guided by antici-
patory mechanisms, in which predictions of the future serve as reference signals
for efficient perceptual processing, behavioral control, goal-directed behavior,
and social interaction.

In the previous volume we offered an encompassing definition of anticipatory
behavior: “A process, or behavior, that does not only depend on the past and
present but also on predictions, expectations, or beliefs about the future.” [14,
page 3]. While this definition might clarify anticipatory behavior, anticipatory
mechanisms can clearly come in a variety of forms, influencing a variety of be-
havioral and cognitive mechanisms.

This introduction first provides an overview over the possible beneficial in-
fluences of anticipatory mechanisms and how these influences might be real-
ized most efficiently. It then surveys the contributions included in this volume.
First, known cognitive mechanisms involved in anticipatory processes in the
brain and in language evolution are surveyed. Moreover, a fundamental challenge
for artificial cognitive systems is identified. Next, individual anticipatory behav-
ioral processing mechanisms are addressed, including several conceptualizations,
frameworks, the effective generation of predictions, and effective behavior execu-
tion. Finally, the book moves on to interactive, social systems and investigates
the utility of anticipatory processes within.

2 Potential Benefits of Anticipatory Behavior
Mechanisms

During the discussion sessions at the workshop day in Rome in September 2006,
it became clear that there are multiple facets and benefits of anticipatory mecha-
nisms. These can be conceptualized by their nature of representation and general
influence on cognitive processes, as proposed previously [15]. Additionally, rep-
resentations of time-dependent information and consequent knowledge gain can
be distinguished based on their respective benefits for behavior and learning.
These aspects are re-considered in the following sections.

2.1 The General Nature of Anticipatory Mechanisms

In many cases, it has become clear that anticipation itself is often slightly mis-
understood, particularly due to the non-rigorous usage in habitual language.
Therefore, we have offered an explicit distinction of different processing aspects of
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anticipations and have focused the workshop effort more on explicitly anticipa-
tory mechanisms in cognitive systems.

First of all, anticipations can very generally be divided into implicit and ex-
plicit anticipatory systems. In implicit anticipatory systems, very sophisticated
but reactive control programs are evolved or designed—potentially leading to in-
telligent, implicitly anticipatory system behavior. That is, albeit these systems
do not have any explicit knowledge about future consequences, their (reactive)
control mechanisms are well-designed so that the systems appears to behave
cleverly, that is, in implicit anticipation of behavioral consequences and the fu-
ture in general. This workshop, however, focuses more on explicitly anticipatory
systems, in which current system behavior depends on actual explicit represen-
tations of the future. Cognitive psychology and neuroscience have shown that
explicit anticipatory representations exist in various forms in animals and hu-
mans [44,26]. Thus, we are interested in anticipatory programs that generate
predictions and utilize knowledge about the future to control, guide, and trigger
maximally suitable and efficient behavior and learning.

Explicit anticipatory systems may be divided further into systems that use:

– Payoff Anticipations;
– Sensory Anticipations;
– State Anticipations.

Payoff anticipations characterize systems that have knowledge of behaviorally-
dependent payoff and can base action selection on that representation. That
is, different payoff may be predicted for alternative actions, which allows the
selection of the current best action, as done in model-free reinforcement learning
[78]. Sensory anticipations can be characterized as anticipatory mechanisms that
support perceptual processing. State anticipatory processes enhance behavior
decision making and execution exploiting anticipatory representations [15].

2.2 How Anticipations Can Help

To conceptualize and distinguish different sensory and state anticipatory mech-
anisms further, it is worthwhile to consider the question of how anticipations
may affect cognitive processes (cf. also [26]). Thus, we now discuss how antici-
patory mechanisms may influence adaptive behavior and, particularly, how such
mechanisms may be beneficial for adaptive behavior. From a computationally
oriented perspective the question arises how predictions, predictive representa-
tions, or knowledge about the future can influence sensory processing, learning,
decision making, and motor control. Several different “how aspects” may be
distinguished, which are first listed and then discussed:

– Useful information can be made available sooner, stabilizing and speeding-up
behavior.

– Predictions can be compared with actual consequences, improving sensory
processing, enabling predictive attention, and focusing model learning.
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– The possibility to execute internal simulations can improve learning and
decision making.

– Goal-oriented behavior can be triggered by currently desirable and achievable
future states, yielding more flexible decision making and control.

– Anticipatory representations of information over time can be behaviorally
useful.

– Models and predictions of the behavior of other agents may be exploited to
improve social interaction.

Information Availability. Cognitive systems often face a serious timing and
time delay issue. Sensory information is simply too slow to be processed and to
arrive in time at the relevant behavioral control centers of the brain to ensure
system stability. Behavioral experiments and simulations confirm that humans
must use forward model information to stabilize behavioral control [21,61]. In
psychology, the reafference principle [83] conceptualizes the existence of a for-
ward model, proposing that efferent motor activity also generates a reafference,
which specifies the expected action-dependent sensory consequences. Advanced
motor control uses predictive control approaches that can yield maximally effec-
tive control processes [16].

Thus, cognitive systems should use re-afferent predictions that depend on ac-
tivated efferences. These predictions can be used to avoid system instabilities due
to delayed or missing sensory feedback. Interestingly, such stabilization effects
come into play even with stabilizing recursive mathematical equations, making
them “incursive” [22]. In sum, since future information can be predicted and
thus be made available before actual sensory information arrives, system control
and stability can be optimized by incorporating predicted feedback information.

Predictions Compared with Actual Consequences. Once subsequent sen-
sory information is available, though, the predicted information can be compared
with the real information to determine information novelty and thus informa-
tion significance. Hoffmann [43,44] provides various pieces of evidence from psy-
chological research that suggest that many cognitive processes, and especially
learning, rely on comparisons between predictions and actual observations. One
fundamental premise of his anticipatory behavior control framework is the com-
parison of anticipated with actual sensory consequences. These comparisons may
be based on Bayesian models [53,20], which suggest that information integration
in the brain is dependent on certainty measures for each source of information,
and thus also most likely for forms of predicted information.

The first benefit of such a comparison is the consequent, continuous adaption
of behavior based on the difference between predicted and actual behavioral
consequences, as was also proposed in the reafference principle [83]. Hereby, the
difference measure gives immediate adaptive control information, in addition to
the current sensory state information. Also control theory relies on such com-
parisons to improve system measurements and system control, most explicitly
realized in the Kalman filtering principle [51,36].
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The filtering principle can also be applied to detect unexpected changes in the
environment and consequently trigger surprise mechanisms. For example, based
on a novelty measure that depends on the reliability of current predictions and
actual perceived sensory information [59], surprise may be triggered if the current
observation significantly differers from the predicted information. Surprise-based
behavioral mechanisms can then improve system behavior, enabling a faster and
more appropriate reaction to surprising events.

Surprise-dependent processes can also be used to improve predictive model
learning itself. For example, surprise-like mechanisms were shown to be useful
to detect important substructures in the environment [9], which furthermore is
useful to partition the environment into partially independent subspaces. This
capability was used, for example, to efficiently solve hierarchical reinforcement
learning problems [6,75]. Other mechanisms train hierarchical neural networks
based on failed predictions or based on activity mismatch between predicted and
perceived information [74,67].

Internal Simulations. Both aspects considered so far are mainly of the na-
ture of sensory anticipations, that is, sensory processing is improved, enhanced,
compared with, or substituted by anticipatory information. On the other hand,
anticipatory information can also be used beyond the immediate prediction of
sensory consequences to improve behavior and learning. Interactions with the
experienced environment are often re-played or projected into the future by
means of an internal predictive environmental model [18,32,40]. Two types of
internal simulations can be distinguished: online and offline simulations. Online
simulations depend on the current environmental circumstances and can improve
immediate decision making. Offline simulations resemble reflective processes that
re-play experienced environmental interactions to improve learning, memory, and
future behavior.

Current decision making can be influenced by simulating the consequences of
currently available alternatives. In its simplest but least computationally costly
form, preventive state anticipations [19] may be employed, which simulate the
usually occurring future events based on habitual behavior. The mechanism only
triggers preventive actions if the habitual behavior is expected to lead to an
undesirable event. In doing so, undesirable states can often be avoided with only
linear additional computational effort—linearly predicting the future of what
“normally” happens. Advanced stages of such anticipatory decision making leads
to planning approaches that consider many possible future alternatives before
making an actual decision [5,15,77].

In contrast to such online, situation-dependent simulation approaches for ac-
tion decision making, offline simulation, that is, the simulation of events that are
not necessarily related to the current situation, have been shown to be useful for
memory consolidation as well as for behavioral improvement. An example for
memory consolidation is the wake-sleep algorithm [41], which switches between
online learning phases, in which data inputs are stored in internal activation pat-
terns, and offline learning phases, in which internally generated memory traces
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lead to memory generalization and consolidation. A similar structure is exhibited
in bidirectional neural networks, originally applied to visual structuring tasks [67]
where the emergent activity patterns resembled neuronal receptive fields in the
visual cortex.

However, there are also behaviorally-relevant types of simulation, as exempli-
fied in the DYNA-Q system in model-based reinforcement learning [77,78] and re-
lated sub-symbolic generalizing implementations of the same principle [5,10,76].
Hereby, an internal environmental model is exploited to execute internal “as if”
actions and to update internal reinforcement estimates. Interestingly, from the
behavior observation alone, it is often hard to determine if behavior is anticipa-
tory due to previous offline simulations and resulting memory consolidation or
due to online, situation-dependent planning simulations [12].

In summary, internal environmental simulations can help to make better im-
mediate decisions, improve action decision making in general, and to learn and
generalize the predictive environmental model itself.

Goal-initiated Behavior. Internal simulations, however, do not appear to be
the whole story in the realization of efficient, flexible, adaptive behavior. Rather,
behavior appears to be generally goal-directed, or rather goal-initiated [43,44,82].
That is, the activation of a desired goal state precedes and triggers actual be-
havioral initiation and execution. Cognitive psychological research confirms that
an image of a goal, which is currently achievable, such as some immediate action
consequences, is present before actual action execution is initiated [56]. More-
over, concurrently executed actions interfere mainly due to goal representation
interferences, as shown in various bimanual behavioral tasks [60,55].

Thus, goal representations appear to trigger behavior, which is thus never
reactive but always anticipatory. This is essentially the tenet of the ideomotor
principle, proposed over 150 years ago [37,81,48]. This principle is now most
directly used in inverse modeling for control, in which a goal state and the current
state trigger suitable motor commands as output [50,57,62,80]. To further tune
the inverse model capabilities, coupled forward-inverse modules can enable the
choice of the currently most suitable inverse models amongst alternatives [84,34].

Additionally, it has been shown that goal-initiated behavior can efficiently
resolve and exploit redundancies in the activated goal representation(s). For ex-
ample, concrete goal states may be chosen based on redundant alternatives [72].
Also motor paths may be chosen based on current alternatives dependent on
anticipated movement effort [8]. In this architecture, additional task constraints
can be easily accounted for, for example, realizing efficient obstacle avoidance
or compensating for inhibited joints [8,38]. A recent combination with reinforce-
ment learning mechanisms enables the motivation-dependent goal activation,
effectively unifying payoff with state anticipations [39].

PredictiveRepresentations. Besides immediate influences on sensoryprocess-
ing and behavior, predictive representations need to be considered in more detail,
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which are often neglected in current adaptive behavior research. Representations
need to be generated that identify dependencies in time rather than in space or
between current input dimensions.

Recurrent neural networks have been applied in this respect, beginning with
the famous Elman networks [23]. Recently, successful motor control patterns
were published not only for hierarchical, self-organizing forward-inverse control
structures [35] but also for the generation of believable behavioral patterns in
real robot applications [46,45]. Additionally, the LSTM network approach [42,30]
proved to be able to efficiently relate regular recurring patterns over time. Echo-
state networks [47], on the other hand, are able to efficiently detect dynamic
patterns over time.

Applications of predictive representations in artificial cognitive systems ap-
pear imminent. Hierarchical clusters of captured dynamics to, for example, clus-
ter linguistic structures into recurring phonemes, syllables, words, and sentences
appear demanding. In this respect, a hierarchical sequence learning architecture
was shown to exhibit interesting, dynamically growing characteristics [11]. Cur-
rent performance of various recurrent neural network approaches and hierarchical
approaches can be found elsewhere [31,24].

Social Anticipations. The last aspect of beneficial influences of anticipatory
mechanisms lies in social interaction. Recently, there has been increasing evi-
dence that social beings show strong capabilities to represent the behavior of
other animals by means of mirror neurons [71]. Hereby, neural activity is shown
to represent not only one’s own behavioral patterns, such as a grasping action,
but also similar behavioral patterns executed by another animal.

Studies show that the animals hereby not only mirror the actual action but
also the purpose (that is, the goal) of the action [29]. Gallese strongly suggests
that mirror neurons are the key component to develop mutually beneficial in-
terpersonal relations and empathy mechanisms [28,27]. Arbib relates the mirror
system and consequent imitative capabilities to language evolution [1].

Regardless of the representation used, it seems obvious that, in order to ef-
fectively interact with conspecifics, avoid betrayal, but exploit mutual possible
benefit, it is necessary both to be able to individuate the conspecifics with which
interaction will take place and to be able to predict the behavior and current
goals of the other individual. Only then does trust and mutually beneficial be-
havior seems possible beyond evolutionary determined self-less behavior [69].

3 Overview of the Book

The taxonomy presented in the last section is reflected in the workshop con-
tributions. Additionally, as the title suggests, the book moves from brain and
cognitive evidence for anticipatory mechanisms to individual and social antic-
ipatory behavior systems. This general train of thought, however, is not only
reflected by the paper distribution in this volume, but it is also reflected in
various contributions themselves.



8 M.V. Butz et al.

3.1 Anticipations in Brains, Language, and Cognition

In the next chapter, Jason Fleischer [26] surveys neural correlates of anticipa-
tory processes in the brain, linking neural activity patterns identified in neu-
roscience research to anticipatory processes and research in adaptive behavior.
First, he gives an overview of neuroscientific research paradigms and points out
the difficulty in the different methodologies. He then focuses on three impor-
tant brain areas: (1) the cerebellum, which is mainly involved in motor learning
and control, (2) the basal ganglia, which is involved in reward-based learning,
sequential action selection, and timing issues, and (3) the hippocampus, which
is involved in sequential representations and memory formation. All three areas
are known to also represent anticipatory aspects of behavior and learning. Fleis-
cher concludes that the insights gained with respect to the distinct structures of
the three regions as well as their involvement in anticipatory processes should
provide helpful guidelines to design future anticipatory, brain-inspired artificial
cognitive systems.

Samarth Swarup and Les Gasser [79] survey anticipatory aspects in language.
They suggest that the more complex the language, the more anticipatory and so-
cial components appear to be involved in it. They take an evolutionary approach
and first identify the minimal conditions for the emergence of a proto-language.
Then, they analyze various languages in animals and identify the complexity of
the structure of a language and the symbolic character of a language as the two
main criteria for overall language complexity. Finally, they propose that over-
all language complexity increases along an anticipation axis from implicit over
payoff and sensory, to state, and to social anticipations. Theories of natural and
artificial language evolution are surveyed from this perspective. In conclusion,
the paper proposes that the study of the minimal conditions for the emergence
of language and the anticipatory component within may lead towards the de-
sign of artificial social agents that are able to learn to interact by a form of
communication that emerges within the agent society itself.

Alexander Riegler [70] then provides a slightly controversial but thought pro-
voking essay on the potential problem of superstitious machines. He points out
that an artificial system that attempts to process all information available is
destined to start believing in non-existing correlations. Such false beliefs about
interdependencies in the world may then lead to superstition and potentially
mental illness in the machine. The solution is not to follow an information
processing paradigm for the design of artificial cognitive agents, but rather an an-
ticipatory constructivist approach, which focuses on the validation of internally
generated, relevant anticipatory representations. Thus, instead of constructing
artificial cognitive systems as datamining machines, we should focus on machines
that construct an internal reality that represents only relevant interactions and
dependencies of the environment.

3.2 Individual Anticipatory Frameworks

The subsequent contributions focus on anticipatory mechanisms and artificial
cognitive system frameworks that include anticipatory components.
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Giovanni Pezzulo et al. [65] compare the ideomotor principle from the field
of psychology with the test operate test exit (TOTE) system from cybernet-
ics. Both principles have a goal-directed nature with an emphasis on behavior
and learning. Studies of a visual search system, a developmental arm control
system, and a motivational model-based reinforcement learning system show
that the ideomotor principle and the TOTE specify very similar behavioral
principles. Moreover, the comparisons point out that both principles are rather
underspecified and highlight additional mechanisms necessary to realize actual
implementations.

Vladimir Red’ko et al. [68] then propose the “animat brain” framework for the
design of artificial cognitive control systems. The framework is based on func-
tional systems that contain a coupled system of a forward model predictor and
an inverse model actor. Comparisons with other approaches highlight the poten-
tially high flexibility of the “animat brain” approach due to the combination of
reinforcement learning with hierarchically linked functional systems.

Aregahegn Negatu et al. [64] introduce an autonomous agent architecture
termed the “learning intelligent distribution agent (LIDA) system”, which is
also inspired by cognitive processes. Their system incorporates payoff, sensory,
and state anticipatory mechanisms. It it able to build associative and procedural
memory structures based on schema mechanisms, it realizes selective attention
based on global workshop theory [3,4], and it is able to select actions based on
its current internal drives and reinforcement learning principles. Simulations of
the system show competent behavioral and adaptive capabilities illustrating au-
tomation and deautomation due to an anticipatory measure of prediction failure
and consequent allocation of attentional resources.

Giovanni Pezzulo and Gianguglielmo Calvi [66] introduce a framework that
can be used to simulate and evaluate schema-based anticipatory behavior mecha-
nisms. Schema-based design, which is inspired by cognitive psychology research,
is theoretically analyzed emphasizing goal-orientedness, flexibility of application,
selectivity of information, and excitability, which depends on current drives and
contextual input. Moreover, cooperative competition between schemas as well as
pragmatic and epistemic (that is, information seeking) aspects of schema activity
are investigated. Pezzulo and Calvi then introduce the computational platform
“AKIRA Schema Language (AKSL)”, which allows the implementation of con-
current resource-competitive schema systems. Exemplars show that the system
masters action selection, attentional mechanisms, category formation, the simu-
lation of future behavior, grounding schema activity in behavioral patterns, and
hierarchical action control. The paper concludes with a proposal to use AKSL
to shed further light on the question when anticipatory mechanisms are really
beneficial for the improvement of cognitive process and behavior.

3.3 Learning Predictions and Anticipations

The next section of the book introduces several approaches to learning predic-
tions and correlations in time. Often, it is proposed that sensorimotor contin-
gencies are learned, that is, action-dependent sensory changes.
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Wolfram Schenck and Ralf Möller [73] teach a moving camera head to predict
sensory changes dependent on self-induced camera movements. They distinguish
between two learning tasks: learning to predict future visual input and learning
to predict the predictable visual areas in the input. To do so, their algorithms
learn an action-dependent mapping of visual input rather than to predict the
visual input directly. The task is successfully accomplished with a real cam-
era head plus simulated fovea image (a retinal mapping), showing impressive
learning and consequent action-dependent image mapping capabilities. The an-
ticipatory component comes in handy here both for learning the mapping as well
as for identifying predictable sensory input, working on the direct comparison of
anticipated and consequently perceived actual input.

Jérémy Fix et al. [25] move higher up in the visual processing realm and tackle
the task of memorizing the location of stimuli, which were previously focused
upon. The task to maintain a coherent internal memory of stimulus locations de-
spite the drastic perceptual changes due to saccadic eye movements is certainly
non-trivial. To solve the problem, the authors introduce an interactive model
of working memory, which maintains currently perceived inputs dependent on
focus and predictions, and long-term memory, which predicts perceived inputs
and is updated by working memory activity. Hereby, simulations show that an-
ticipations are mandatory to be able to maintain a coherent memory of stimuli
locations in the environment, independent of current eye focus. A complete and
coherent memory can only be maintained when anticipatory mechanisms are
applied.

Stefano Zappacosta et al. [85] propose a testbed for recurrent neural networks
and related systems to integrate information in time. The task is to scan an
object or a wall while moving around it or along it, respectively. The recurrent
network is trained to classify the object scanned, investigating prediction ro-
bustness, noise-robustness, and different aspects of generalization capabilities of
the network in question. Elman networks, leaky integrator neural networks, and
echo state networks are exemplary introduced as suitable network candidates.
An Elman network is then evaluated on two testbed instances: a wall task in
which two different wall patterns need to be distinguished, and an object task
in which three different objects are perceived. The testbed, possibly with addi-
tional action-information of movement type and speed in the future, seems to
be a valuable tool to test and compare the capabilities of different time-series
classification algorithms on somewhat real-world robotic classification tasks.

Philippe Capdepuy et al. [17] investigate the more symbolic challenge of event
anticipation. The information-theoretic measures based on constant and consis-
tent time delays as well as on contingency, that is, proximity in time, are used
to automatically detect interesting event dependencies. Although only the pre-
dictive capabilities are investigated, the authors discuss the importance of such
capabilities for anticipatory action decision making and propose also the involve-
ment of epistemic verification actions that could be triggered for the verification
of hypothesized event dependencies. Despite currently unresolved scalability as
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well as subsymbolic issues, the paper shows that the employed information-
theoretic measures are highly capable of detecting consistent event contingencies
and time-delay relationships.

3.4 Anticipatory Processes in Behavioral Control

Predictive capabilities alone are not sufficient for anticipatory behavior, though.
The following papers address different aspects of goal representations and pre-
dictions that directly influence actual behavior.

Kiril Kiryazov et al. [52] present an integrated behavioral architecture that
uses symbolic analogical reasoning to make action decisions. The system is
mounted onto the Aibo real-robot platform and solves the task of finding interest-
ing objects in a house-like environment. Besides the anticipatory decision making
capabilities based on analogy, the system applies selective attention mechanisms
as well as top-down anticipatory perception mechanisms to filter out relevant
information in the environment. Although it is hard to compare the current ca-
pabilities of the platform with other architectures due to the many hardware and
setup dependent factors, the resulting anticipatory behavior aspects realized on
an integrated real-robot platform are highly promising.

Toshiyuki Kondo and Koji Ito [54] present a recurrent neural network ar-
chitecture with neuromodulatory biases that shows to be able to reach targets
under various force fields. The network weights and connectivity evolve by means
of a genetic algorithm. It is shown that the anticipatory biases are beneficial to
achieve more robust reaching behavior under differing force fields. The results
suggest that recurrent self-stabilization mechanisms can be highly beneficial for
adaptation in gradually changing environmental circumstances. Future evalua-
tions appear necessary to further shed light on the emergent representations and
control components in such evolved recurrent neural network structures.

Arnaud Blanchard and Lola Cañamero [7] study how positive and negative
goal states can be efficiently remembered in order to enable optimal behavioral
control. They use a developmental approach that learns to classify goals based on
a reinforcement learning derived scheme. Their aim is to use a minimal amount
of memory by remembering only maximally suitable and unsuitable states in the
environment—leaving the task to reach these states to a goal-directed control ar-
chitecture. Their real robot implementation of the system is able to identify suit-
able goals as well as undesirable goals efficiently with a very low memory require-
ment. Future work intends to enhance the goal identification mechanism to be
able to identify multiple and more distinct goals. Moreover, the goal generation
mechanism will be interfaced with a motivational component, which will gener-
ate drives and correspondingly desired goal states as well as goal-directed motor
control mechanism, which will be able to reach currently desirable goal states.

Arshia Cont et al. [2] use predictive system capabilities for the generation
and improvisation of music. The paper provides a thorough overview of antici-
patory cognition identified in music theory, suggesting that musical processing is
highly anticipatory based on veridical expectations, schematic expectations, dy-
namic adaptive expectations, and conscious expectations. All four types interact
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concurrently and competitively. The remainder of the paper then focuses on the
integration of payoff and state anticipations into a music generating and im-
provisation architecture, working either in self listening mode or in interaction
mode, respectively. The provided results of the imitation of a Bach piece are
impressive and promise fruitful future integrations of anticipatory mechanisms
for automatized music generation and improvisation.

3.5 Anticipatory Social Behavior

After the study of different aspects of individual anticipatory behavior, the last
chapters of this book address the importance of anticipatory mechanisms for
efficient social interaction.

Mario Gómez et al. [33] introduce an anticipatory trust model in open dis-
tributed systems. A theoretical taxonomy of trust distinguishes between direct
trust, which is about previously experienced service quality of another agent,
and advertisement- and recommendation-based forms of trust, which are about
the suggested service quality of another agent by yet other agents. The different
measures are combined into a global trust measure—essentially the weighted
average of the individual measures. Experiments are carried out in a simulated
market environment with trading agents. The results stress the importance of
stability and the capability to identify properties of other individuals, in order
to be able to develop effective notions of trust. Moreover, they show that if the
system is able to predict the behavior of other agents, the agent is able to adapt
to changes in the environment more effectively.

Gerben Meyer and Nick Szirbik [63] study anticipatory alignment mechanisms
in multi agent systems with petri nets. Conceptualizations are carried out within
belief propagating networks, studying three types of alignment policies: on-the-
fly alignment, pre-interaction alignment, and alignment induced by a third party.
The mechanisms are illustrated within a business information system, sketching
out constraint transactions of goods and money between multiple agents. It is
shown that the state anticipatory mechanism is able to yield more efficient agent
interaction executions. The integration of trust mechanisms for more efficient
agent communication appears imminent. Moreover, the proposition of actual
simulations in real-world game-like scenarios with other artificial agents, but
also with expert players, promises to be highly revealing for future applications.

Emilian Lalev and Maurice Grinberg [58] study two recurrent neural network
architectures playing the iterated prisoner’s dilemma. While the first model used
backward-oriented reinforcement learning methods, the second network basis its
move decisions on generated predictions about future games. Thus, the latter
network anticipates the behavior of the opponent player. The results suggest
that human players use anticipatory capabilities to guide their decision process
within the game. As with actual human participants, the cooperation rate of
the latter network depended on a so-called cooperation index, which quantifies
the likelihood that the opponent player cooperates. Thus, the results suggest
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that anticipatory connections are mandatory for efficient human-like network
interaction within the iterated prisoner’s dilemma game.

The final paper in this series studies the benefits of anticipating the behavior
of another robot agent. Birger Johansson and Christian Balkenius [49] placed
two real robots in differently complex arenas with the task of switching places
with each other. The results show that in very simple environments without
obstacles, a goal-directed behavioral strategy without any consideration of the
opponent player, except for a reactive hard-coded obstacle avoidance mechanism,
yielded the most efficient behavior. However, in more complex environments, in
which robot interference is inevitable and harder to resolve, anticipatory mech-
anisms yielded the fastest behavior. In this case, the anticipatory mechanism
predicted the behavior of the opponent robot and resolved possible trajectory
conflicts online. Thus, it is shown that higher complex environments can make
more complex, cooperative, anticipatory mechanisms beneficial. In very simple
interactive environments, on the other hand, ignorance of the opponent or coop-
erative player can also be more effective, since no expensive contemplations and
communicative interactions are necessary.

4 Conclusions

Research on anticipatory behavior mechanisms can be found in a variety of
research areas. Indications for anticipatory mechanisms in the brain, and their
influences on cognition and resulting individual and social behavior, continue to
accumulate. It is hoped that anticipatory research in general, and this enhanced
and re-reviewed post-workshop proceedings volume in particular, will contribute
to a general understanding of anticipatory mechanisms in cognitive systems.

This introduction conceptualized different anticipatory mechanisms providing
a taxonomy of how anticipatory mechanisms may improve adaptive behavior
and learning. The overview of the contributions of this volume exposes impor-
tant correlations of anticipatory behavior mechanisms between different research
disciplines. These include neuroscience, cognitive psychology, linguistics, individ-
ual and social adaptive behavior research, music theory, business research with
trading agents, and research in cognitive modeling.

The book can certainly only provide a glimpse at the different aspects of antic-
ipations in these various disciplines. However, we believe that the contributions
reveal and develop many highly correlated recurring anticipatory mechanisms
and they identify many anticipatory principles that are highly beneficial to im-
prove individual and social adaptive behavior. Thus, we hope that the articles
in this volume will be inspiring for researchers in the cognitive systems area and
lead to the offspring of many fruitful future research projects and interdiscipli-
nary collaborations amongst scientists interested both in a deeper understanding
of natural cognitive systems and in the further development, design, and appli-
cation of adaptive, flexible, and efficient artificial cognitive systems.
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