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Abstract. A new approach to building robots with anticipatory behavior is 
presented. This approach is based on analogy with a single episode from the 
past experience of the robot. The AMBR model of analogy-making is used as a 
basis, but it is extended with new agent-types and new mechanisms that allow 
anticipation related to analogical transfer. The role of selective attention on 
retrieval of memory episodes is tested in a series of simulations and 
demonstrates the context sensitivity of the AMBR model. The results of the 
simulations clearly demonstrated that endowing robots with analogy-based 
anticipatory behavior is promising and deserves further investigation. 
 
 

1. Introduction 

Our everyday behavior is based on explicit or implicit employment of predictive 
models. If we are looking for an object it may simply happen that we see it by chance 
and go to take it (reactive behavior) or we can imagine where it could possibly be and 
go to that place to check whether it is there (anticipatory behavior). 

IT systems will be closely related to everyday environments in the near future and 
they will have to perform complicated tasks related to these environments, including 
searching for lost objects. In order for them to be successful and autonomous, to deal 
with novel and dynamic environments, to be pro-active and trustworthy in supporting 
people in their activities, such robots and devices need to have sophisticated cognitive 
capabilities based on anticipation. 

Some models, related to this goal, use connectionist networks that generalize from 
past experience and predict the future on the basis of these generalizations. For 
example, ALVINN [16] not only reactively responds to the environment but also 
predicts what will be seen in the next step. The Anticipatory Learning Classifier 
Systems (ALCs) ([17], [4], [5]) form a class of models that combine reinforcement 
learning with online generalization and thus propose diverse anticipatory 
mechanisms. The DYNA-PI systems [18] use reinforcement learning mechanisms to 
plan on the basis of a model of the world. Planning iteratively generates “chains of 
predictions” starting from the current state and using the model of the environment. 
Recently these models implement this planner with connectionist networks ([1], [2]). 



Finally, the architecture of Rodney Brooks [3] proposes a set of layered modules that 
interact dynamically with each other and with the environment. Thus, “behavior-
based robots” based on the concept of the “action circuit” are proposed. However, the 
architecture is mainly reactive and is not able to anticipate future events. 

This paper proposes an alternative approach towards anticipation based on 
reasoning by analogy. Thus, anticipations are formed not only by capturing the 
regularities in the world, but by using a single past episode. Sometimes the analogy 
between the current situation and an episode in memory can be very superficial. For 
example, the new and the old episodes can share the same set of objects but they can 
be placed differently, an analogy of this type would be: last time the bone was behind 
the red block, so the robot may expect the bone to be behind the red object again. 
However, sometimes the analogy could be much deeper and thus generating non 
trivial predictions. For example, suppose that in the past episode the bone was behind 
an object with unique color (the only green object among many red ones). If in the 
target situation all the objects are having the same color, but there is an object with 
unique form (the only cube among many cylinders), then the robot can predict by 
analogy that the bone is now behind this unique object. 

Many share our assumption that analogy-making is not only a specific and rare 
human capability but is fundamental for human cognition [7]. A number of cognitive 
models exist modeling various parts of the analogy-making process. SMT [6] assumes 
that only the relations are important and thus the attributes are completely ignored. 
The analogy is based on mapping identical relations from the target to the base 
situation. On the contrary, ACME [8], LISA [9], and AMBR [10] allow for mapping 
of relations with different names. LISA differs from AMBR in the sense that the 
former is not capable of mapping too complex structures. ACME constructs all 
possible correspondences and thus the model can not be scaled up. None of the 
models presented so far has been used for prediction and anticipation. We decided to 
extend the AMBR model in order to build anticipatory capabilities in robots based on 
the DUAL cognitive architecture ([11] [15]). 

In this paper we present a first exploratory step in this direction based on a 
simulation of a robot in the Webots environment. We use AMBR as a reasoning core 
of the system and connect it to the simulated robot and physical environment. 

As it became clear from the above discussion, our long-term project is to design 
robots that are able to demonstrate anticipatory behavior based on analogy. However, 
in order to explore in detail how analogy can be used in anticipation we started with a 
relatively simple example based on a simulated house-like environment (see Figure 1a) 
and a simulated AIBO robot. The simplicity of the task makes it possible to 
investigate the role of the various mechanisms involved in analogy as assumed by the 
AMBR model.  

The house-like environment consists of several rooms and doors between some of 
them. In the rooms there are various objects like cubes, balls, cylinders, etc. The goal 
of the AIBO robot is to find a bone (or bones) hidden behind an object (Figure 1a). In 
a more complicated task there could be many robots: some of the robots should find 
and collect some ‘treasures’, whereas other robots play the role of ‘guards’ that try to 
keep the treasures and hide them dynamically or block the way of the treasure-
hunters. (Figure 1b). 

  



Room B

Room C

Room D Room E

Room F

Room G

 

Room C

Room D Room E

Room F

Room G

Treasure hunters

Guards

 

Figure 1. The micro-domain of a house-like environment. a) The goal of the robot is to 
find the bone. b) There are ‘treasure-hunters’ and ‘guards’ with different goals and 
strategies. 

The strategy of exhaustive search would be very inefficient in real time and 
sometimes simply impossible especially when the environment is dynamic and 
changes over time as in the case of Figure 1b. Moreover, we believe that in structured 
environments like the one shown in Figure 1, anticipation based on analogy will be 
the most efficient approach, because it will take full advantage of the structure of the 
environment memorized in previous episodes. A simulated robot and its simulated 
environment – a room in which there are three cubes and possibly a bone hidden 
behind one of them – is shown in Figure 2. 

 

 

Figure 2. Robot-environment interaction (real or simulated). 



2. The DUAL Architecture 

2.1. Basic Properties 

DUAL is a cognitive architecture, launched by Kokinov in 1994 ([11], [15]). It 
consists of memory structures and processing mechanisms, organized around the 
following principles: 

- Hybridity – DUAL combines the symbolic with connectionist approaches, by 
integrating them at the micro-level. 

- Emergent computations – the global behavior of the architecture emerges from 
local interactions among a huge number of small entities, called DUAL-agents. There 
is no central executor that monitors the whole system. 

- Dynamics and context–sensitivity – The behavior of DUAL changes continuously 
in response to the influence of the dynamic changes in context. There is no clear-cut 
boundary between the task and its context. Instead, the context is assumed to be the 
state of the system in any certain moment, i.e. the pattern of activation over the set of 
DUAL-agents. This pattern is assumed to reflect the relevance of the various pieces of 
knowledge in the current context. Some DUAL-agents might be relevant because the 
corresponding elements are currently perceived from the surrounding environment, 
others – because they reflect the current goals of the system, and finally, some agents 
might be relevant because they were recently used and thus they have some residual 
activation.  

2.2. DUAL–Agents 

The basic structural and functional element in DUAL is the DUAL–agent. It is hybrid 
in two ways – it has both connectionists and symbolic aspects, and it serves both as a 
representational and a functional unit. 
Connectionist’s Aspect. From the connectionist’s perspective, each agent is a node in 
a localist neural network. It continuously receives activation, updates its current 
activation level, and spreads it through associative links to other agents. An important 
feature of DUAL is that it distinguishes the semantic meaning of the agents from their 
relevance, considering them as independent. The activation level is a numeric value 
that codes the relevance of each agent. The pattern of activation does not represent 
any concept or scheme, but just the current context. 
Symbolic Aspect. From the symbolic point of view, DUAL–agents are organized in a 
semantic network. Each agent ‘stands’ for something – an object, property, relation, 
etc. It has its own micro-frame. The micro-frames have slots, which in turn may have 
facets. There are two kinds of slots – general ones (G-slots), and frame-specific ones 
(S-slots).  

G-slots have labels, the meaning of which is invariant across the agents, for 
example  :type,  :subc, etc. S-slots also have labels, but their labels are arbitrary, i.e., 
:slot1 in one agent may mean something very different from :slot1 in another agent. 
S-slots (and only S-slots) have facets, i.e., slots within slots. The same set of labels 
applies to both G-slots and facets. 



Symbolic Processing. DUAL – agents interact with each other. These interactions are 
relatively simple – they always involve two agents – one of them sends some 
information, and the other one reads it. 

Each DUAL – agent has a symbolic processor. It can receive or construct symbolic 
structures, transform them, store them in its own local memory, and send them to 
neighboring agents. A typical symbolical transaction involves receiving a symbolic 
structure, comparing it with the other symbolic structures in the local memory, storing 
it, transforming it via specific to the agent’s type routines, and sending its 
modification. Each one of these steps is discrete. DUAL – agents manipulate symbols 
sequentially, one after another, with a frequency that reflects the relevance of the 
respective agents. 
Relationships between Connectionist and Symbolic Processing. All aspects of the 
agents are merged in a single whole and each one influences the others. 

Only a small number of agents whose activation exceeds a certain threshold form 
the Working Memory (WM). The agents that are outside of the WM cannot perform 
any symbolic operations – they are assumed invisible. For the agents that are involved 
in the WM, the activation level determines the speed of the symbolic processing. Each 
elementary symbolic operation (namely read, send, modify, etc.) has a ‘price’ that is 
paid with activation. Whenever an agent wants to perform such an operation, it begins 
to accumulate activation in order to pay the required price. Only after it is ready, it 
can perform the operation. Therefore, the most active agents work rapidly, the less 
active ones – slowly, and the inactive ones do not work at all. In this manner, the 
relevance influences the symbolic part of the architecture. 

There is also an opposite dependence. The symbolic operations cause new agents 
to be born, and new connections to be established. These operations change the 
overall pattern of activation and thus, the symbolic operations influence the pattern of 
relevance too. 
Types of agents. Each DUAL-based model consists of nothing but of DUAL-agents 
with various types and with various properties. For the purpose of the AMBR-based 
robots with anticipatory capabilities are used the following types of agents: 

Concept–Agents (for short concepts) represent classes of homogeneous entities and 
are organized in a semantic network. They are interconnected via vertical links, for 
pointing respectively to their super-classes and some of their sub-classes. They are 
interconnected also horizontally, pointing to some associations and prototypical 
relations. Note that concepts can stand for objects as well as for relations and abstract 
terms. 

Instance-Agents (instances) represent individual entities. Each instance has a G-
slot that points to its respective category concept. There are also links in the opposite 
direction that connect the concepts to some of their instances. Some instances are 
permanent – they are part of LTM and represent concrete memory traces. Other 
instances are temporary – they are constructed on the spot because of certain 
inferences. 

Hypothesis-Agents represent possible correspondences between entities. They are 
temporary agents; they do not participate in LTM; and if they lose their relevance, 
they disappear. Hypotheses are organized in a constraint satisfaction network. Each 
hypothesis has its ‘life cycle’ – it can transform itself from embryo to mature 



hypothesis, and then to winner. These sub-types reflect the degree to which the 
hypotheses are novel and attractive. 

Anticipation-Agents represent possible entities and relations, predicted by the 
system. They are also temporary agents. The predictions can be confirmed or rejected 
by the perceptual systems. In the first case the anticipation agents would mutate into 
permanent ones, whereas in the second case they would disappear. 

Cause-agents represent a special kind of relations. They are equipped with a 
special procedure that allows them to make decisions whether particular movements 
to be performed. For example, if the system anticipates that the bone is behind the 
blue cylinder, then the knowledge transferred from the past situation that movement 
to the blue cylinder would cause finding the bone would be represented by a cause 
relation. In turn, the concrete action (in the example – movement to the blue cylinder) 
would be actually performed. 

Action-Agents code procedural knowledge about particular movements. Note that if 
an action-agent becomes relevant this does not imply that the particular movement 
would be necessarily performed. The decision should be taken by a cause-agent. 

2.3. The Coalitions of Agents 

DUAL – agents are very simple and some of the more important properties of the 
architecture could be observed if looked at from a distant perspective.  

DUAL – agents form coalitions, i.e., sets of agents, together with the pattern of 
interactions among them. Coalitions represent more complex entities like propositions 
or situations. However, the coalitions are not part of the strict computational 
description of the architecture. Instead, they enhance the conceptual understanding 
only. 

Three important properties of the architecture become visible only at the level of 
coalitions. The coalitions are decentralized, emergent, and dynamic. None of these 
properties is presented in the individual agents. The coalitions vary in the intensity of 
the interactions among their members in comparison to the intensity of interactions 
with the outside agents. ‘Tight’ and ‘loose’ coalitions could be distinguished in 
respect to this ratio and there is a whole continuum between these two extremes. 

Coalitions do not have clear-cut boundaries. Instead, the same agent can participate 
in two or more coalitions and to a different extent. In the course of time, the coalitions 
can become ‘tighter’ or ‘looser’, can break up, and new coalitions can emerge. 

3. The AMBR Model 

3.1. Main Ideas 

AMBR is a model for analogy making based on DUAL. It treats analogy making as 
an emergent result of the common work of several overlapping sub-processes – 
perception, retrieval, mapping, transfer, evaluation, and learning. However, AMBR is 



a long-term project and unfortunately, at the current stage only the processes of 
retrieval, mapping, and transfer are modeled and integrated. 

AMBR is capable of capturing some similarities between local structures of agents 
and mapping them, creating hypotheses for correspondences. It is a pressure for these 
mappings to grow, involving other agents. In this way, a Constraint Satisfaction 
Network is formed. Just as in the process of crystallization, the system strives to a 
stable equilibrium, changing quantitatively itself. Because the structure–based 
mappings emerge locally and grow, often some inconsistent hypotheses meet and 
compete with each other and sometimes blending between episodes occurs. 

3.2. Mechanisms Used in AMBR 

Spreading Activation. The sources of activation are two special nodes – INPUT and 
GOAL. Their activation level is always equal to the maximal value. The node INPUT 
represents the perception of the system, whereas the node GOAL – the current tasks 
of the system. More sophisticated perceptual and goal-analyzing modules are under 
construction now. They should replace the INPUT and GOAL nodes. AMBR’s work 
begins when some agents that represent the environment, are attached to INPUT, and 
some other agents, which represent the task – to GOAL. Various context or priming 
objects can be attached or removed from INPUT at any moment in time. The 
activation then spreads through the Long-Term Memory (LTM) network. 

The spreading activation mechanism defines the working memory as the set of all 
agents, which activation level exceeds a certain threshold; determines the speed of the 
symbolic processes performed by each individual agent; and underlies the relaxation 
of the constraint satisfaction network. 
Marker Passing. Generally speaking, the marker-passing mechanism serves to find 
out whether a path between two agents is present or not. All symbolic interactions 
between agents, i.e. exchanging messages, are local and involve only two neighbors. 
The marker passing mechanism is not an exception, but it allows information about 
agents to be carried through longer distance as an emergent result. 

AMBR marks the instance-agents, which enter in the WM; they in turn mark their 
respective concepts; then the markers spread to their neighbors that are up in the class 
hierarchy, and so on. 

The main purpose of the mechanism is to justify some semantic similarities 
between two agents. Whenever two markers cross somewhere, AMBR creates a 
hypothesis about a correspondence between the two marker origins. The justification 
for this hypothesis is the fact that these two origins have a common super-class, i.e., 
they are similar in something. Note, that AMBR makes such inferences only if the 
whole paths of the markers involve only relevant agents. 
Structural Correspondences. Like marker passing, this mechanism creates 
hypotheses between agents. The difference is that the former is sensitive to semantic 
justifications, whereas the latter – to propositional ones. There are different kinds of 
structural correspondences – if two relations are mapped, their arguments should also 
be mapped; if two instances are mapped, their respective concepts and situations 
should be mapped. 



Because several mechanisms create hypotheses independently, it is possible for 
some of them to be duplicated, or some of them to be contradictory. A special 
procedure, attached to each agent monitories the hypotheses in which the respective 
agent is involved and establishes inhibitory or excitatory links between them. 
The Constraint Satisfaction Network. The Constraint Satisfaction Network (CSN) 
consists of hypotheses for correspondences and is interconnected with the main one. 
Each hypothesis receives activation from its arguments and from its justifications. It is 
also inhibited from its competitors (responding to the pressure for one-to-one 
mapping). Thus, CSN simultaneously reflects the semantic, pragmatic, and structural 
pressures of the analogy–making task. Due to the CSN, the global behavior of the 
system emerges from the local interactions between agents. However, it is important 
to note that no time is spent waiting for the CSN to settle in order to read out the 
‘solution’ from the activation pattern. This allows cognition to be viewed as a 
continuous process, without breaks between the given tasks. 
Rating and Promotion. Because at some moment the system should finish its work, 
each agent rates its competing hypotheses at regular time intervals. If one of them 
holds for a long time as a leader, it is promoted to a winner. 

Some of the instance-agents (the elements of the target situation) are authorized to 
use the rating mechanism. The purpose of this mechanism is to monitor all hypotheses 
that involve the agent and to send promotion incentives to those that emerge as stable 
and unambiguous leaders. 

Each authorized instance keeps a data structure, called rating table. The individual 
ratings for each registered mature hypothesis are stored in this table. Individual 
ratings are just a numbers that characterize the relative success of the respective 
hypothesis – how long, how recently, and how strongly has it been a leader, according 
to its rivals. The instance-agents periodically (in a fixed time interval and whenever a 
hypothesis registration request come) adjust the individual ratings. The rating of the 
current leader increases, whereas those of the other hypotheses decrease. The amount 
of the change is proportional to the difference between the activation levels of the 
leader and its closest competitors. 

When the individual rating of some hypothesis exceeds a certain threshold, the 
respective instance-agent sends to it a symbolic structure, called promotion incentive. 
In addition, it eliminates all looser hypotheses. When a hypothesis agent receives such 
message, it transforms itself to winner hypothesis. 

Note, that there is not any central executor that monitors the CSN and decides 
whether the network is relaxed enough. Instead, some hypotheses become winners 
locally and in asynchrony. This allows blending between episodes to occur, or unique 
solutions to be found (of course, sometimes useless solutions are also proposed by the 
system). 
Instantiation. There are two mechanisms for instantiation - skolemization and 
transfer. The former augments the descriptions of the retrieved episodes based on 
semantic and structural information. The latter adds new information to the target 
situation. These mechanisms ensure tolerance towards the lack of information and 
make the reformulation of the task possible. However, in the current paper we 
describe a novel instantiation mechanism for creating anticipation-agents. 

Imagine the following situation: Let the green cube in the target situation be 
mapped onto the red cylinder from an old situation in memory. Let the system recalls 



that the bone was behind the red cylinder. This is a reason to anticipate that now the 
bone should be behind the green cube. A new instance of the relation ‘behind’ should 
be created and should be connected to its arguments – ‘bone’ and ‘green cube’. This 
will be an example of anticipation-agent. 

The exact algorithm for creating anticipation agents is the following: each agent 
that wins in the mapping competition, checks whether it is an argument of a relation. 
If yes, the agent informs the relation it is part of. Thus, each relation monitors whether 
all of its arguments are mapped with winners. If this is the case, the relation decides 
whether to instantiate a self-copy procedure. If it lacks any promising hypotheses, it 
starts the process of self-copy. If there are promising hypotheses then the mapping is 
correct and these hypotheses may be promoted at a later moment, thus there is no 
need to create a new instance. 

The just born agent starts its life cycle as anticipation agent. Some of the 
anticipation agents serve to direct the attention. For example, the relation ‘same 
color’, connecting two red cylinders from a base situation can instantiate itself. Thus, 
a new anticipation-agent would connect the respective correspondences of the two 
cylinders. It is now the responsibility of the perceptual system to check whether the 
anticipation is correct or not. 

An interesting result emerges, however, when the perceptual system cannot check 
directly the new prediction, for example, when the relation ‘behind’ is transferred. In 
such a case, multiple new anticipations emerge. In particular, the causal relation from 
the base that represents the knowledge “The bone was behind the red cylinder and 
that caused AIBO to move to it and it successfully found the bone” would instantiate 
itself using the same mechanism. Analogously, an action-agent “move to the green 
cube” would also be created. 

Finally, the new casual relation would recognize that this certain movement would 
cause reaching the goal and would activate the corresponding procedural knowledge 
for actual movement. 

3.3. Anticipation by analogy 

We have designed new mechanisms for creation of anticipations. AIBO transfers 
some relations and objects from the past episodes to the current situation. This 
transferred knowledge is assumed to be an expectation. Again, following the main 
principles of the DUAL architectures, all instantiation operations are performed 
locally and only looking at the system “from above”, the whole pattern of new 
anticipation-agents could be viewed as a certain anticipated state of the world. 

Note, however, that all mechanisms in AMBR work in parallel and thus, the 
instantiation mechanisms influence other cognitive processes. In particular, we 
assume that the anticipation-agents play an important role for controlling the attention 
and in turn the processes of retrieval and mapping. 



4. Simulation Results 

Suppose the AIBO robot faces several objects in a room. It must predict where 
(behind which object) the bone is hidden and then to go to the chosen object. Here, 
we present the simulated version of the real world scenario. 

4.1. Mapping between Close Situations 

In the first simulation the mechanisms for transfer and skolemization were switched 
off in order to check the mapping process. The AIBO robot had four past episodes 
encoded in its memory (Figure 3).  

 

 

Figure 3. Old episodes in the memory of the robot, used in the first simulation 

 

Figure 4. The target situation, used in the first simulation 

The specific number, color and shape of the objects varied across the episodes. The 
relations between the objects also varied. In all six runs of the simulation one and the 
same target situation (see Figure 4) was given to the model but different aspects of it 
were attached to the INPUT node, thus simulating different attention biases. The 
representation of the target included DUAL-agents representing the objects 
(OBJECT1, OBJECT2, OBJECT3), as well as some of their properties (BLACK1, 
BLACK2, GREEN1, BALL1, BALL2, BALL3). Other DUAL-agents represented 
object properties (e.g. COLOR-OF1, SHAPE-OF1, etc.). Finally, there were relations 
that involved one or more objects, e.g. LEFT_OF, SAME-COLOR1, NEIGHBOR1, 
etc. (see Figure 4). 



The task of the robot, in this simulation, was to establish a mapping between the 
target and certain base situation. The target situation (more precisely, some aspects of 
the target situation) was used for recalling old episodes from memory. These old 
episodes were gradually and partially retrieved; gradual mappings between various 
target and base elements emerged; the mapping in turn was influencing the retrieval 
process. Thus, implicitly the memorized bases competed with each other for the best 
mapping with the target. It is important to note, however, that all these mappings 
emerged from local interactions only, without any central mechanism that would 
calculate the best match among all episodes available in the long term memory. 

The results of the simulation are systematized in Table 1. 

Table 1. The results from the first situation 

Run Relations at the INPUT Winner base 
situation 

1 The three balls B2 
2 The three colors B4 
3 The three left-of relations B3 
4 The two neighbor relations and the three colors B4 
5 Only the concept ‘green’ B2 
6 The relations ‘same-color’ and ‘unique-color’ B2 

As shown in Table 1, by varying only the attention bias, the model retrieved 
different past situations for further analogy making. Note, that this result was 
achieved by AMBR, testing it in extreme conditions: all old episodes are very similar. 
They all involve simple geometrical objects and relations that are relatively close 
semanticaly. Typically, analogy-making models (SME, ACME, LISA, as well as 
AMBR in previous simulations) are used and tested with dissimilar episodes in 
memory. 

4.2. Single Run of the Model 

After all additional mechanisms for instantiation and moving were added, four new 
bases were designed, including a bone hidden behind a specific object in each of them 
(see Figure 5). The target consisted only of three red cubes and a specific task to find 
the bone was also represented and attached to the GOAL list. Again certain properties 
of the cubes, namely their colors, were highlighted by attaching them to the INPUT 
node. The simulated AIBO robot was supposed to use the target to retrieve an old 
episode and to establish mappings between the elements of the two situations. In 
addition, the position of the bone in the base situation had to be transferred in order to 
predict the place of the hidden bone in the target situation. Finally, a motor command 
had to be sent in order to execute the movement. Again, all these operations emerged 
only from the local interactions of a large number of microagents. Each DUAL-agent 
just made its specific job with a speed, proportional to its relevance to the task, and 
the observed behavior was a result of all these small micro-mechanisms 
simultaneously at play. 



    
Episode A Episode B Episode C Episode D 

Figure 5. Old episodes in the memory of the robot used in the second and third 
simulations 

In Figure 6, part of the log from the run of the model is presented: 
 
T=52.10, #<PR SAME-COLOR-SIT-003> received in SAME-COLOR-SIT-
003<-->SAME-COLOR-THREEGREEN. 
T=56.20, #<PR SIT-SIT-003> received in SIT-SIT-003<-->SIT-
THREEGREEN. 
T=56.90, #<PR FIND-SIT-003> received in FIND-SIT-003<-->FIND-
THREEGREEN. 
T=61.00, #<PR AIBO-I-SIT-003> received in AIBO-I-SIT-003<--
>AIBO-I-THREEGREEN. 
T=69.20, #<PR INITST-SIT-003> received in INITST-SIT-003<--
>INITST-THREEGREEN. 
T=69.30, #<PR BONE-SIT-003> received in BONE-SIT-003<-->BONE-
THREEGREEN. 
T=119.00, #<PR IN-FRONT-OF-SIT-003> received in IN-FRONT-OF-
SIT-003<-->IN-FRONT-OF-THREEGREEN. 
T=290.20, #<PR MIDLE-CUBE-SIT-003> received in MIDLE-CUBE-
SIT-003<-->MIDLE-CYLINDER-THREEGREEN. 
Time: 294.600: Just created agent: ANTICIP-MOVE-THREEGREEN- 
Time: 295.400: Just created agent: ANTICIP-BEHIND-THREEGREEN- 
Time: 303.400: Just created agent: ANTICIP-CAUSE-THREEGREEN- 
THE ACTION ANTICIP-MOVE-THREEGREEN- IS EXECUTING!! 
T=314.60, #<PR RED-2-SIT-003> received in RED-2-SIT-003<--
>GREEN-2-THREEGREEN. 

Figure 6. Part of the script of a single run of the system 

The first several lines are reports for establishing winner hypotheses between 
certain target elements and elements from the four bases. The first winner connected 
two ‘same-color’ relations – one from the target and one from episode B, named 
‘ThreeGreen’ (see Figure 5). The second hypothesis was established between the two 
situation-agents and thus resulted in additional massive retrieval of all of the elements 
of situation ‘ThreeGreen’. Soon after, many relations and objects found their 
corresponding elements (FIND, AIBO, INITIAL-STATE, BONE, IN-FRONT-OF, 
MIDLE-CUBE). Note that the bone in the past episode was hidden behind the middle 
cylinder, which has just found its corresponding element. The system did not wait a 
full mapping to be established. Instead, the instantiation mechanisms immediately 
begun their work and soon some anticipation agents were created. Thus, gradually, in 
parallel with the processes of retrieval and mapping, the anticipated state emerged in 



AIBO’s memory system. Namely, it anticipated that the bone was hidden behind the 
middle cube (because the current situation was analogical to the retrieved episode of 
three balls with same color and a bone behind the middle one). Moreover, AIBO 
inferred that if it would move to the middle cube, it would achieve its goal. As a 
consequence, the respective action was executed. Note, that the execution of the 
action did not stop the process. The establishment of additional mappings could 
continue even after achieving the goal. 

4.3. Statistical Results from Many Runs of the System 

At the end, a set of eight target situation was designed, varying the shape and the 
color of the objects involved (Figure 7).  

        
1 2 3 4 5 6 7 8 

 

Figure 7. The eighth target situations used in the third simulation 

In order to achieve statistical results, a special tool for creating variants of the 
knowledge base was used. More precisely, 50 combinations of top-down links from 
the concepts to the particular instances were randomly created, thus simulating 50 
different variants of the core memory. Each of the eight targets was run against each 
of the knowledge-base variants in two different conditions – focussing the attention of 
the system on the colors or on the shapes of the objects, respectively. Thus, two 
distributions of the preferred past episode were achieved (see Figure 8). 
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Figure 8. Comparing the statistical data when the attention was focused on color (left 
panel) or shape (right panel). 



It is shown that when the attention is focused on the shapes only, the base was 
chosen almost randomly. This is because in all base situations the shapes were equal 
and thus, the shape was actually irrelevant to the task. AMBR successfully responded 
to this irrelevance, assuming all bases as almost equally good candidates for analogy. 

However, this was not the case, if the color was in the focus of attention. 
Clear tendencies to prefer certain bases depending on the target can be observed. 

At the same time the model was flexible enough, allowing multiple solutions of the 
problem to be found depending on context (top-down links). These results reconfirm 
the context-sensitive behavior of AMBR observed previously in other domains [12]. 

Consider for example the retrieved bases for the second target problem (two green 
cubes and a green ball in between). The preferred base was B (three green balls) 
mainly because of the identical colors of all three objects and the fact that attention is 
concentrated on color. However, quite often an interesting analogy between the 
second target and the episode D (one white ball and two black balls) was produced. In 
this case the system detected that the relation same-form in the target could be 
mapped onto the relation same-color in the base. The system mapped these two 
relations and this in turn helped for the retrieval of episode D. 

5. Conclusion 

A new approach towards building anticipatory agents has been presented, namely 
building predictions using analogy with a single past episode.  

The AMBR model was extended with new agent-types and new mechanisms for 
building anticipatory-agents based on the existing mechanisms of skolemisation and 
transfer. These new mechanism were successfully tested in simulation experiments. 
Additionally, the role of the attention bias for the choice of a base for analogy was 
explored. Thus, new pressures, which a future fully fledged perceptual system should 
account for, were defined. 

These simulations showed that the newly proposed mechanism can be seriously 
considered as an important part of any advanced cognitive system with anticipatory 
capabilities.  

The presented work is just a small step in a long-term project. Designing 
perceptual capabilities would allow for automatic encoding of new situations and 
thus, the behavior of real robots instead of simulated ones could be tested. Bottom-up 
and top-down mechanisms for locating the attention should be carefully modeled and 
their influence on the robot’s behavior further investigated.  
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