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Abstract

We explore the possibility for a situated sys-
tem to evolve what Barsalou calls a percep-
tual symbol system (PSS). We describe the
peculiarities of perceptual symbols and point
out the main capabilities of organized, multi-
modal frames of perceptual symbols called
simulators. We present a case study in
which perceptual symbols and simulators are
evolved and exploited for categorization, pre-
diction and abstraction.

1. Introduction

Our aim is to investigate the emergence of percep-
tual symbols (Barsalou, 1999), “records of the neural
activation that arises during perception” and simula-
tors, multimodal frames which afford representation
and motor control.

According to (Barsalou, 1999), during activity the
brain records sensorimotor aspects of the experience
in the format of perceptual symbols. These represen-
tations are not analogical but schematic: only some
features are selectively recorded such as colors, edges,
spatial relations, movement, etc. In this way multi-
modal frames are stored in long term memory; they
are not just aggregates of features, but have a distinc-
tive productive capability, giving rise to simulators.
Simulators are organized systems of perceptual sym-
bols: they can generate a simulation of categories of
objects or events stored in the frame by rehearsing
the associated perceptual symbols, and typically do
it in absence of physical exemplars. Specific runs of
a simulator reenact the multimodal experience of a
category; simulations are always schematic and never
complete, and represent types and not tokens.

Simulators play many roles. They intervene in
categorization: objects or events are simulated and
matched with actual perception; typically many sim-
ulators run a simulation providing a good fit to the
entity, and the best fitting simulator is selected.
They thus embed the principium individuationis of
a concept. Simulators provide a basis for prediction,
too: once an object or event is categorized, the simu-
lator permits to predict its behavior, since the repre-

sentation is expressed in an interaction-oriented for-
mat. Simulating also produces visual and motor im-
agery. Simulators offer a semantic theory, too, being
roughly equivalent to concepts: if we have an appro-
priate simulator of something, then it can be said
that we understand the concept. Simulations permit
to model the two main peculiarities of concepts, i.e.
to be detached and to afford abstraction. By simu-
lation, subsets of perceptual states are extracted to
function symbolically and support the higher cogni-
tive functions. For example, they can be used off-
line for providing inferences about likely properties
of entities even in their absence. Or, they can rep-
resent abstract categories such as friends, enemies,
etc. Off-line and on-line activity can also be cou-
pled: off-line simulations can be mapped later to
perceived entities. Simulators also permit to avoid
the wrong consequences of having amodal concepts,
i.e. how to translate modal and amodal symbols and
the grounding problem: simulations are modality-
specific or even multi-modal, never amodal.

In the rest of the paper we illustrate a compu-
tational roadmap from the emergence of perceptual
symbols to the formation of simulators, responding
to questions such as: how are they formed? which
features are stored? We also illustrate their role in
categorization, prediction and abstraction.

2. Schemas and Simulators

In our schema-based architecture many perceptual
and motor schemas store interactive information
about the entities to deal with and permits to engage
a reliable interaction with them. In our simulations
we will focus only on tracking (with a fovea controlled
by perceptual schemas) and following (with a motor
controlled by motor schemas), but our methodology
can be applied to other forms of interaction.

Perceptual and motor schemas are not analogi-
cal representations of the entities, but embed reli-
able ways of interacting with them in their presence
and even in their absence. The core element of the
schemas is their forward model, permitting to antic-
ipate the consequences of the possible interactions
with an entity and to “stay attuned” to it. In the



Figure 1: The Model of a Perceptual Schema

Figure 2: The Model of a Motor Schema

case of perceptual schemas, this does not mean pas-
sive visual data processing, but active visual explo-
ration, tracking the entity with a fovea. In the case
of motor schemas, this means following the entity.

Schemas Fig. 1 and fig. 2 show the pseudo-closed
loop between controllers and forward models in per-
ceptual and motor schemas. The controllers send a
control signal to the actuators, which integrate them
and act accordingly; on the same time, an efference
copy of the (final) command signal is sent to the for-
ward models of all the schemas, which compute the
next expected input. The dashed lines indicate that
a feedback signal is received; in the case of percep-
tual routines, this is the stimulus from the fovea (as
we will see, the input is represented by the activity
level of a set of visual routines, such as detect grey
is very active); in the case of motor routines, the
stimulus is the activity level of perceptual schemas
and of proprioceptive routines. Some perceptual and
motor schemas are thus functionally related, because
the motor schemas use as input the activity level of
the perceptual schema; we call these schemas coupled
perceptual-motor schemas.

The dashed circles indicate that there is a com-
parison between the actual input stimulus and the
expected stimulus. The degree of (mis)match be-
tween them is used for two main functions: (1) Ad-
justment of Control : the motor commands are ad-
justed thanks to the feedback signal and can for ex-
ample compensate time delays, unreliable of absent
sensors. (2) Action Selection: schemas have a vari-
able activity level, which means more or less con-
trol of action; more active schemas, in fact, process

more input, send more commands to the actuators
and spread more activation to other schemas (see
later). The activity level of the schema represents
its relevance: for perceptual schemas it represents a
confidence level that a certain entity, encoded in the
schema, is or is expected to be present; for motor
schemas it represents a confidence level that the be-
havior encoded in the schema is both applicable and
useful in the current situation. We argue that rele-
vance depends on anticipation; schemas anticipating
well get more activation; the rationale is that they
are well attuned to the current situation. This is ob-
tained by matching the actual and expected stimulus
and assigning activation proportionally to the degree
of match, as in (Wolpert and Kawato, 1998).

Perceptual Symbols and Simulators In this ar-
chitecture, schemas are roughly the equivalent of per-
ceptual symbols in (Barsalou, 1999), storing infor-
mation about the related entity in an interaction-
oriented format. There is not a clear cut distinc-
tion of functioning between perceptual and motor
schemas as we intend them; the former ones are spe-
cialized for visual exploration of the object, while
the latter ones are specialized for other forms of en-
gagement such as following (as in the case of this
paper), escaping or manipulating. A simulator is
a coordinated collection of coupled perceptual-motor
schemas, providing an unitary, multimodal categor-
ical principle which unifies the diversity of many
modality-specific schemas and a set of patterns of
possible interactions. Each simulator is character-
ized by a specific pattern of activation of the in-
volved schemas, which is also induced by the en-
ergetic links evolved by the schemas; the problem
of evolving a simulator is also close to the binding
problem (von der Malsburg, 1981).

Our aim is to investigate how competing schemas,
specialized for tracking and following the same or
different features (such as color, size, shape, motion;
see (Wolfe, 1996) for a review of the features used in
visual tasks) of the same entity (1) arise as percep-
tual symbols and (2) are organized in simulators.

Perceptual symbols and simulators are evolved in
two steps. In the former a “free exploration” of the
environment gives rise to many schemas coupling mo-
tor commands and expected inputs. In the latter the
regularities in the environment (such as the stability
of the entity over time and the coherence of its possi-
ble modifications, due e.g. to its movement) permit
a synthetic representation of the entity since percep-
tual and motor schemas engaging the same entity
evolve reliable patterns of interaction.

Fig. 3 illustrates a simulator: set of schemas which
“work together” for tracking and following an insect.
There are many schemas specialized for tracking and
following many kinds of colors, shapes, trajectories,



Figure 3: A simulator involving many schemas.

etc. The different colors of the schemas in the figure
represent different levels of activation; for example,
since in the picture the prey is dark, it is very likely
that schemas related to dark colors will be very ac-
tive, while schemas related to light colors will be not.
The same is true for other features. Schemas having
coherent patterns of activation evolve links (horizon-
tal edges). This is for example the case of schemas
specialized for different features of the same entity.
Functionally coupled schemas (motor schemas using
as input the activity level of perceptual schemas) of-
ten become linked, too. Since links afford spread-
ing activation, linked schemas tend to synchronize,
resulting in “clusters” of active schemas which we
interpret as simulators.

Before describing the architecture and the simu-
lations, two caveats: (1) There is not a one-to-one
mapping between a feature and a schema. For exam-
ple, many competing tracking schemas can be spe-
cialized for slow or quick, dark of grey entities. In
the case of a “quite slow” entity, it is likely that a
simulator will involve both slow-tracking and quick-
tracking schemas and, for the sake of tracking, both
are needed (but the most fitting ones, the “proto-
types”, evolve stronger links). (2) Simulators share
some schemas, which can be active (at different levels
and with different patterns) in different simulations.

3. The Architecture

Fig. 4 shows the components of the architecture: the
perceptual and motor schemas (i.e. the components
to be evolved); the routines; the actuators.

3.1 The Perceptual Schemas

As shown in Fig. 1, each perceptual schema has three
components: a detector, a controller and a forward
model. The detector acquires relevant input (pre-
conditions) from the the fovea. The controller sends
motor commands to the fovea. The forward model
predicts the next stimulus, i.e. the activity level of
one or more visual routines after the agent’s action.

In addition to the mechanism assigning more ac-
tivation on the basis of anticipation, perceptual
schemas get also activation if the stimuli they are

specialized for are indeed present in the environment:
again, the preconditions in the detector are matched
against the activity level of the corresponding visual
routines and activation is assigned proportionally to
the degree of match.

Active perceptual schemas influence the rest of the
architecture in three ways. Firstly, they send mo-
tor commands to the fovea, orienting it toward rel-
evant entities; more active schemas send commands
with higher fire rate. By orienting the fovea, the
schemas are able to partially determine their next
input (they have an active vision). In an antici-
patory framework, this functionality is mainly used
to test the predictions of the forward models: for
example, tracking a moving object is a way to ac-
quire new stimuli in order to test the expectations.
Secondly, they spread activation to the related vi-
sual routines, priming them and realizing visual im-
agery (Kosslyn and Sussman, 1994). For example,
track grey schema primes the gray-detector visual
routine, even in absence of real stimuli; this func-
tionality can be used to select only relevant stimuli
from the fovea and to complete fragmented percep-
tual inputs. Thirdly, more active perceptual schemas
activate more their coupled motor schemas; as above
discussed, this leads to re-enacting whole simulators.

3.2 The Motor Schemas

As shown in Fig. 2, each motor schema is similar to
a perceptual schema and has the same three compo-
nents. In the detector the preconditions are matched
against the activity level of one or more perceptual
schemas. For example, the motor routine follow grey
has as a precondition the perceptual routine track
grey ; this means that if the activity level of the lat-
ter is high, the former gains activation, too. The
controller sends commands to the motor. The for-
ward model produces expectations about perceptual
stimuli to be matched with sensed stimuli.

3.3 The Routines

The perceptual schemas do not receive raw input
from the fovea: a number of preprocessing units,
the visual routines, filter fovea information (although
with different priority). We have included several
feature-specific visual routines specialized for colors,
sizes, shapes and motion. The activity level of the
visual routine directly encodes the presence of ab-
sence of associate entities; for example, an active
red-detector encodes the presence of red entities. A
similar mediating role is played by the motor routines
(such as move right and move left), commanding the
fovea and the motors; in this case, the activity level
of move right encodes the turning angle. There are
also proprioceptive routines such as move left provid-
ing feedback information from the motors.



Figure 4: The Components of the Architecture: Schemas, Routines, Actuators

3.4 The Actuators

The actuators (motor and fovea controllers) re-
ceive as input commands from all the active motor
routines and perform fuzzy based command fusion
(Kosko, 1992). Since routines have different prior-
ities, commands are sent asynchronously and with
different fire rates. Again, fire rate encodes priority:
more active routines send more commands to the ac-
tuators and influences it more. The actuators pro-
duce in output two vectors of coordinates < x, y, z >
and < x1, y1, z1 >, representing the next position of
the agent and the next fixation of its fovea (that can
zoom), and send them to the physical engine.

4. The Three Learning Phases

Our aim is to develop a simulated robotic system
which is able to track and follow many entities (say
insects) having different shapes, dimensions, veloci-
ties, colors and trajectories. In order to do so, the
system builds up and exploits a number of schemas
for the feature to be tracked and followed, and assem-
ble them into simulators. Simulators, via their for-
ward models, produce predictive information which
permit to categorize and predict the entities’ behav-
ior and to “stay attuned” to them in an active explo-
ration. We also discuss how to learn simulators for
more abstract concepts with the aid of some drives.

The architecture is evolved in three phases. In
the first phase, schemas are learned via “free explo-
ration”. In the second phase, simulators arise. In the
third phase more abstract concepts such as “preys”
and “predators” are learned thanks to the introduc-
tion of internal drives.

4.1 First Phase: Perceptual Symbols

In the first phase, many feature-specific schemas
are learned by means of free sensorimotor interaction
with the environment only involving few insects per
time. Schemas learn the consequences of the agent’s
actions via the forward model in order to orient the
fovea or the motors towards their expected positions.
Schemas can thus be seen as predicting rules which

permit to be attuned with the transformations of
some features of the environment.

As discussed in (Piaget, 1985), there is not jet an
“ontology” of the objects of interaction, but only
actions and percepts. The input of a perceptual
schemas is the value of one or more visual routines;
the forward model learns to predict their next val-
ues depending on the actions of the fovea and the
controller exploits that information for calculating
where to move the fovea for centering the target.
The input of the motor schemas is the value of one or
more perceptual schemas and of one or more proprio-
ceptive routines; the forward models learn to predict
their next values depending on the actions of the
motor, and the controller exploits that information
for calculating where to move the motor in order to
reach or follow the target. In both cases the con-
troller exploits the forward model: the former ori-
ents the center of the fovea or the motor in the po-
sition in which the latter anticipates the presence of
the tracked/followed object in the next step. Each
schema is learned independently. We argue that suc-
cess of prediction is the main functional criterium
for the formation of perceptual and motor schemas.
Firstly, schemas learn until their accuracy in pre-
diction is satisfactory. In this way the agent builds
up a reliable repertoire of actions affording antici-
patory capabilities. Secondly, since motor schemas
learn to exploit as inputs the activity level of per-
ceptual schemas, they become functionally coupled.

Design Firstly we have designed a set of feature-
specific visual routines (for colors, shapes, trajecto-
ries, size; see (Wolfe, 1996)) and two sets of motor
routines (such as turn left or turn right), one for the
fovea and one for the motor. Secondly, we have
introduced a set of perceptual schemas specialized
for one or more visual routines, and a set of mo-
tor schemas specialized for the corresponding per-
ceptual schemas. The detector component was thus
specific for a given input (e.g. a given set of visual
routines), while the controller and forward models
learned to associate visual and motor information.



In both cases we used feed-forward neural networks
having three input, three output and twelve hidden
unities, using sigmoid functions and learning with
error backpropagation. In the perceptual schemas,
the input of the controller is the activity level of the
perceptual routines related to a single feature (color,
size, etc.), while its output is a motor command for
the fovea (encoded as a high or low activity level of
appropriate motor routines); the inputs and outputs
of the forward model are the converse. In the motor
schemas, the input of the controller is the activity
level of one or more perceptual schemas, while its
output is a motor command for the motor; the inputs
and outputs of the forward model are the converse.

In this phase the schemas reliability depends on
the stability and predictability of the environment.
As we will illustrate in the categorization and pre-
diction experiments, since in our simulations the fea-
tures of the insects to track and follow are stable and
predictable, the evolved schemas are reliable.

4.2 Second Phase: Simulators

In the second phase, simulators emerge as multi-
modal frames providing an unitary categorical prin-
ciple for assembling many of the previously learned
schemas. For example, in the first phase the schemas
permit to anticipate the direction of an entity or the
persistence of its color, but they do not associate
these two features to the same entity. Simulators can
do that. The simulators will be assembled according
to the most distinctive features of the entities to in-
teract with (in this case, the entity to track).

We argue, again, that success of prediction is the
main functional criterium for their formation. Per-
ceptual and motor schemas having coordinated pat-
terns of prediction, in fact, evolve energetic links.
Since in our model successful prediction means more
activation, many coupled perceptual-motor schema,
having stable patterns of activation, are thus as-
sembled in a multimodal frame, i.e. a simulator.
As argued before, embodiment and regularities in
the environment permit an unitary account of the
entities; all the features of the entities to track
change (e.g. move) in a coherent way; for this rea-
son, schemas related to features of the same entity
evolve coordinated patterns of prediction. Moreover,
only schemas representing features which discrimi-
nate well the entity are recorded in the simulator; the
other ones will not evolve stable links and will not be
a proper part of the simulator. Schemas are assumed
to discriminate well if their pattern of prediction is
coherent with the other schemas of the simulator and
if their informativeness is positive (i.e. if they are
significantly more active when the entity is indeed
present). As an effect of the diversity of the entities
to be tracked, the number of simulators (and thus of
categories) will be equal to the number of discrim-

inable entities for the sake of tracking/following; if
two insects can be tracked/followed in the same way,
only one simulator will be stored.

Design In this phase we adopted Differential Heb-
bian Learning (Kosko, 1992) for evolving links be-
tween schemas which afford spreading activation.
Lately, by analyzing the topology of the connections
it is possible to observe that clusters have emerged,
i.e. simulators. This method realizes both our
desiderata: (1) simulators arise thanks to the co-
herence in predictions (producing coherence in the
patterns of activation); in fact, schemas which pre-
dict well gain activation and fire more often; and
those who fire together wire together. (2) only infor-
mative schemas become part of a simulator; schemas
which can deal with many entities typically fire in
synchrony with many other schemas, not necessar-
ily related to a single simulator, and evolve weak
links with all them. Since simulators are distributed
they give many advantages over single schemas: each
schema in a simulator can prime the coupled ones
and the whole simulator is re-enacted in presence
of a discriminable entity, modeling input reconstruc-
tion. Moreover, even if some schemas in a simulator
fail (e.g. a shape detector failing to track a partially
occluded insect) the whole simulator is more robust.
We will test this capability by comparing the perfor-
mance of perceptual symbols and simulators.

4.3 Third Phase: Drives and Abstraction

Until now the system has evolved a simulator for each
discriminable entity in the environment. However,
the agent has only one drive, which is to track and
follow all the entities. Since all the simulators have
the same functional role (to allow tracking and fol-
lowing), it is not advantageous to cluster them in al-
ternative ways and to have abstract representations.

(Barsalou, 2003) discusses many senses of abstrac-
tions; here we only investigate the emergence of ab-
stract concepts such as preys and predators, which
are not entities but roles played by the entities. We
argue here that these abstract concepts are ways of
clustering base level concepts such as entities. Again,
according to the idea of simulators, clustering does
not mean simply collecting all the features (or, in this
case, the base level concepts): a simulator for prey or
predator is a schematic representation, thus contain-
ing only the most distinctive features and concepts.

Design In this phase half the insects of the previ-
ous phases played the role of preys, and half of preda-
tors. In order to make this distinction meaningful for
the system we introduced two drives, hungriness and
fear, that can be seen as two inner states which are
sensed by the agent. Drives are modeled as two nodes



in a Fuzzy Cognitive Map (Kosko, 1992) and have in-
hibitory links: in this way, when hungriness is active
it inhibits fear, and vice versa. Hungriness is raised
routinely with a biological clock, increases when a
prey is close and decreases if a prey is reached; fear
increases when a predator is close and decreases oth-
erwise. We also let the system learn avoiding motor
schemas in which the detector and the forward model
are the same of following schemas, but the controller
sends as motor command the opposite one.

Drives are also carriers of energy and can spread
activation to schemas satisfying them. The system
learns to associate drives satisfaction to schemas re-
sponsible for satisfaction: the drives fire more when
they are being satisfied (i.e. when their value low-
ers) and thus they evolve links with related schemas.
After learning hungriness sends activation to the
schemas which successfully track and follow preys;
of course, when hungriness is high (i.e. when a prey
is in sight or the agent is hungry) the drive is able to
provide more energy and the agent is more oriented
toward tracking and following preys. Fear sends ac-
tivation to the schemas which track or avoid preda-
tors; again, when fear is high (i.e. when a predator
is close) fear sends more energy. Since the energetic
resources are limited, schemas for dealing with preys
and predators inhibit each other, too. As in the sec-
ond phase, Differential Hebbian Learning was used
for learning new links (or modifying already learned
ones) between the schemas.

In the abstraction experiment we show how this
process produces two more simulators, for preys and
predators, which embed a schematic representation
of the entities to follow or avoid.

Related Models As usual in schema-based design
(Arbib, 1992) our model exploits concurrent uni-
ties whose activity level encodes relevance. While
many schema-based architectures are reactive, our
approach emphasises the role of anticipatory mech-
anisms, as in simulation theory (Barsalou, 1999),
emulation theory (Grush, 2004) and interactivism
(Bickhard, 2001). In (Pezzulo and Calvi, 2006) a re-
lated model exploiting pre-designed schemas is used
for comparing anticipatory and reactive capabilities,
showing a significant advantage of anticipatory ones.
Related anticipatory schema system are described in
(Drescher, 1991) and (Stojanov, 2001): both are able
to learn context-action-result triplets and assemble
them into higher-level schemas organized hierarchi-
cally. With respect to those systems, in our model
schemas are more complex, involving both an inverse
and a forward model. Other related models are MO-
SAIC (Wolpert and Kawato, 1998) and HAMMER
(Demiris and Khadhouri, 2005), also exploiting in-
verse and forward models for motor control. Dif-
ferently from these systems, in our model: (1) there

Figure 5: Activity timeline of four schemas

is parallelism and the activity level of the compo-
nents, including schemas, is mapped into the priority
of their threads; (2) schemas can spread activation
via evolved links; (3) there is a limited amount of re-
sources which is shared by all the components, thus
schemas compete for resources and only few of them
can be active at once. As we will see these features
permit to evolve simulators for concrete and abstract
entities and to use them as “competing hypotheses”
for categorizing and guiding the behavior.

5. The Experiments

We implemented the above described architecture by
using the framework AKIRA (akira, 2003) and the
3D engine IRRLICHT (irrlicht, 2003). The set-up
was a 3D surface with hills (offering partial cover)
and involved twenty insects having variable size,
colors, shapes and trajectories. Two agents, both
having three schemas for each feature, were com-
pared: the former (PS ) only learned in the first
phase; the latter (SIM ) also learned in the second
phase. During the first learning phase up to five in-
sects were present together in the environment; the
agent learned the forward models of its schemas by
interacting with them. One example was sampled
every twelve, with a total of thirty-six; the learn-
ing stopped when the error (the euclidean distance
between the actual and predicted position in 3D,
0.1 ∗ 10−6) was less than 0,0000001 (positions vary
between -10000 and +10000 in the three axes).

During the second learning phase (one session
lasting three minutes) links between schemas were
evolved, too. K-means cluster analysis (using euclid-
ean distance of the activity level of the schemas in
time) was used for investigating how many simu-
lators evolved; since the result was sixteen, we re-
moved from the set-up four “aliased” insects. As
an example, fig. 5 shows a sample timeline involving
four schemas during an interaction with one insect.
K-means analysis (number of classes = 2, euclidean
distance k-means = 0,53) shows that the first three
have coordinated activity patterns and form a cluster
(which we interpret as a simulator), while the fourth



Agent Recall Gen. 75% Gen. 50%
PS 81% 64% 48%
SIM 92% 78% 65%

Table 1: Categorization: percentage of success

Ag. Schema Rec. G. 75% G. 50%
PS Track 0,29% 0,4% 0,5%
PS Follow 0,31% 0,33% 0,61%
SIM Track 0,14% 0,24% 0,37%
SIM Follow 0,17% 0,25% 0,43%

Table 2: Prediction: mean error in %

is unrelated; it has a low activity level, too, since it
is not very relevant.

In order to test the efficacy of simulators we de-
signed two tasks: categorization and prediction with
three levels of complexity: recall (involving insects
used for learning); generalization 75% and 50% (in-
volving insects sharing 75% and 50% of the features
with the ones used for learning). Our hypothesis is
that SIM performs better in all the conditions.

Categorization One insect per time is in the sce-
nario and the tasks consists for the agent in catego-
rizing it by activating the relevant cluster of schemas.
As above described, the sixteen clusters of SIM were
determined with cluster analysis and interpreted as
simulators. We adopted k-means cluster analysis for
PS, too, also obtaining sixteen clusters. We thus
evaluated the reliability of the clusters by considering
how many times the same ones were active when the
same insects were in play. The cluster maximizing
active schemas
total schemas was considered the selected category.

Since simulators compete for limited resources and
an active simulator inhibits the other ones there was
often an unambiguous way to determine the category
in SIM, while in PS the most active clusters often
involved different schemas. The percentage of cor-
rectly categorized insects in 100 simulations is shown
in Tab. 1; SIM categorizes significantly better than
PS (p < 0,001 in all the conditions).

Prediction The task consists in successfully track-
ing the insects (presented singularly) from a start to
an end point. Since all the active schemas send com-
mands to the actuators, the task is an evaluation of
the “coherence” of the simulators. We collected data
about the mean error in prediction (in %) through-
out the trajectory of the final position calculated by
the controllers. Results in 100 simulations are shown
in Tab. 2; SIM predicts significantly better than PS
(p < 0,001 both for track and follow).

Abstraction In the same setup we also designed
an abstraction task for testing an agent after the

Agent Hungriness Fear
ABS 0,792 0,921
NO-ABS 0,632 0,756

Table 3: Abstraction: mean drives satisfaction

third learning phase. The task consists in surviv-
ing in an environment including preys and preda-
tors. We compared two agents, both having the same
schemas and drives described in the third learning
phase. The former (NO-ABS ) only learned in the
first two phases; the latter (ABS ) learned as de-
scribed in the third phase, too. Drives satisfaction
was used as success metric: each agent had to satisfy
its drives, fear and hungriness, i.e. keep their values
close to zero. Since in order to satisfy the drives the
agents have to abstract appropriately, distinguishing
preys from predators, this task permits to evaluate
the appropriateness of the simulators for abstract
concepts. Our hypothesis is that, with the intro-
duction of two drives, two more simulators arise for
predators and preys. We collected data about mean
satisfaction, calculated as 1 − mean drive value, in
100 simulations. Tab. 3 shows the results of our sim-
ulations; ABS predicts significantly better than NO-
ABS (p < 0,001 both for hungriness and fear).

Discussion Our results indicate that after the first
two learning phases an agent is able to categorize
and predict even if, not surprisingly, its performance
degradates when new insects with few features in
common are introduced. After the third phase it
is also able to abstract the role of the insects. Our
results indicate a significant advantage of using simu-
lators in all the tasks. Simulators categorize and pre-
dict better than simple clusters: in many cases one
single schema is doomed to fail (e.g., because its for-
ward model is not totally reliable or because inputs
are aliased or missing or partially unpredictable), but
a coordinated set of schemas can reach a cooperative
solution, prime and compensate each other. It is
worth noting that in the abstraction task typically
both the simulator for the insect (e.g. insect#3 )
and for its role (e.g. prey) arise (and they partially
overlap). Depending on the task, the former or the
latter become more relevant: we have tested ABS in
the categorization and prediction tasks and its per-
formance does not significantly differ from SIM.

6. Conclusions

We have illustrated an architecture for evolving per-
ceptual symbol systems and to assemble them in
simulators. We have tested the architecture in
three tasks, categorization, prediction and abstrac-
tion. Our results indicate the advantage of having
perceptual symbols in the form of schemas and sim-



ulators in the form of multimodal frames of schemas
having coordinated patterns of activation.

Our experiments have implications for the PSS
theory (Barsalou, 1999), too.

• Active sensing vs. topographical maps Perceptual
symbols may or may not be topographically or-
ganized. For example, in (Joyce et al., 2003) PSS
are modeled with topologically organized connec-
tionist networks. Our model is instead schema-
based and closer to (O’Regan and Noe, 2001), in
which vision is a mode of exploration of the world
by mastering the appropriate schemas and not a
“re”-presentation of the world inside the brain.

• Which Simulators Emerge? Simulators emerge
for entities that are (1) predictable and (2) dis-
criminable either for some of their features, as in
the case of different insects, or for the role they
play, as in the case of predators and prays, which
assumes meaning for the system thanks to drives.

• Perception and Action Our interpretation of per-
ceptual symbols emphasizes the coupling of per-
ception and action. Schemas are not only a re-
hearsal of perceptual traces but include motor
programs for interacting with objects, and the
recorded perceptual traces are typically the ex-
pected consequences of those interactions.

Further Work In our experiments we have ex-
ploited the expectations produced by the forward
models only in the sensorimotor cycle of the schemas.
The further step (the “fourth phase”) of this work is
to decouple the expectations and use them for off-
line processing (Barsalou, 1999). Engaging in a sim-
ulated interaction with the entities even in their ab-
sence is crucial for example in planning, permitting
to generate possible alternatives and to reason about
them without actually attempting them.
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