
To appear in KI - Künstliche Intelligenz, BöttcherIT Verlag, 2006.

Holonomic Control of a robot with an omni-
directional drive.

Raul Rojas and Alexander Gloye Förster

This paper shows how to control a robot with omnidirectional wheels, using as example robots with four motors, and generalizing
to n motors. More than three wheels provide redundancy: many combinations of motors speeds can provide the same Euclidean
movement. Since the system is over-determined, we show how to compute a set of consistent and optimal motor forces and
speeds using the pseudoinverse of coupling matrices. This approach allows us also to perform a consistency check to determine
whether a wheel is slipping on the floor or not. We show that it is possible to avoid wheel slippage by driving the robot with
a motor torque under a certain threshold or handle it and make high accelerations possible.

1 Introduction

Omnidirectional wheels have become popular for mobile robots,
because they allow them to drive on a straight path from a given
location on the floor to another without having to rotate first.
Moreover, translational movement along any desired path can
be combined with a rotation, so that the robot arrives to its
destination at the correct angle.

Figure 1: Our omnidirectional wheel design (left) and four-
wheeled robot (right).

Omnidirectional wheels mostly based on the same general
principle: while the wheel proper provides traction in the direc-
tion normal to the motor axis, the wheel can slide frictionless in
the motor axis direction. In order to achieve this, the wheel is
built using smaller wheels attached along the periphery of the
main wheel. Fig. 1 (left) shows an example of the kind of wheels
that we have been using for our RoboCup small size and middle
size omnidirectional robots since 2002 [3, 9]. Our wheel is a
variation of the so-called Swedish wheels, which use rollers with
a rotation direction which is not parallel nor perpendicular to
the motor axis.

Two or more omnidirectional wheels are used to drive a
robot. Each wheel provides traction in the direction normal to
the motor axis and parallel to the floor. The forces add up and

provide a translational and a rotational motion for the robot. If
it were possible to mount two orthogonally oriented omnidirec-
tional wheels right under the center of a robot with a circular
base, then driving the robot in any desired direction (without
rotation) would be trivial. To give the robot a speed (vx, vy),
with respect to a cartesian coordinate system attached to the
robot, each wheel would just have to provide one of the two
speed components.

However, since the wheels and motors need some space, this
simple arrangement is not possible (the robot would be also very
unstable!). The wheels are usually mounted on the periphery of
the chassis. More than two wheels can be used, which makes
it also easier to cancel any rotational torque which could make
difficult to drive the robot on a straight path. Popular configura-
tions are three and four-wheeled omnidirectional robots. Fig. 1
(right) shows the CAD design of the omnidirectional robot which
we used at RoboCup 2004 in Lisbon [3].

In the next sections we present first the physical fundamen-
tals we need to control robots with omnidirectional drive. We
present then the energy saving and non slipping control of a
4 wheeled symmetrical robot in ideal circumstances. Unfortu-
nately, we have unpredictable wheel slippage and not fully de-
finable physical robot characteristics. Our goal is to drive fast
and precise which is impossible under the described conditions.
Next we present our approach for handling wheel slippage under
high velocities and accelerations. We correct its impacts by a
system control loop allowing precise and fast movement at the
same time. In Chapter 5 we present some related work.

2 Physical Fundamentals

Each wheel can move the robot forward, but since they are
located on the periphery of the robot, they can also rotate the
robot’s frame. In order to derive the relationship between the
motors’ torques and the movement of the robot, we need to

Page 1

analyze the geometry of the problem.

Figure 2: Arrangement of n wheels and distribution of forces.

Let us use a robot with n ≥ 3 wheels, as shown in the
diagram (Fig. 2).

All the angles of the motor axis are measured relative to
the x direction in the coordinate system of the robot. Call the
angles of the motor axis for the n wheels θ1, θ2, . . . , θn. The
driving direction of the i-th wheel is therefore θi + π/2.

When the n motors are activated, we obtain n traction forces
F1, F2, . . . , Fn from the motors, which add up to a translational
force and a rotational torque. Each traction force Fi is the
torque of the motor multiplied by the radius of the wheel. The
sum of the forces depends on the exact wheel arrangement.

2.1 Force Coupling Matrix

We are interested in the movement of the robot along the x and
y direction. In order to simplify the expressions we will derive,
we consider the instantaneous acceleration and velocity of the
robot with respect to its own reference frame. For example, a
robot moving forward will have a certain positive velocity in the
y direction and zero in the x direction. We call the translational
velocity and the angular velocity of the robot the “Euclidean
magnitudes”, different from the individual motor speeds and
accelerations.

The translational acceleration a and the angular acceleration
ω̇ of the center of mass of the robot (which we assume is located
at the geometrical center of our circular robot), are given by

a =
1

M
(F1 + F2 + . . . + Fn)

ω̇ =
R

I
(f1 + f2 + . . . + fn)

where M is the mass and R is the radius of the robot, fi de-
notes the magnitude of the force Fi, for i = 1, . . . , n, and I is
the moment of inertia. The computation is possible using this
expression, because the forces are tangent to the circular frame
of the robot and point in the same rotational direction, so that
we can work just with the magnitudes of the force vectors. The
magnitudes f1, f2, . . . , fn can be positive or negative, accord-
ing to the direction of rotation of the motor (counterclockwise
or clockwise). The positive rotation directions are as shown in
Fig. 2.

We can compute the x and y components of the robot’s
acceleration, by considering the respective components of each
force:

Max = −f1sin θ1 − f2sin θ2 − . . .− fnsin θn

May = f1cos θ1 + f2cos θ2 + . . . + fncos θn

For a homogeneous cylinder I = 1
2
MR2, for a ring I = MR2.

For any mass distribution strictly between a concentration of
mass in the middle and concentration in the periphery, I =
αMR2, with 0 ≤ α ≤ 1. We can express the above acceleration
equations as a matrix vector multiplication

(
ax

ay

ω̇

)
=

1

M

(−sin θ1 −sin θ2 · · · −sin θn

cos θ1 −cos θ2 · · · cos θn
MR

I
MR

I
· · · MR

I

)
f1

f2

...
fn

We can use I = αMR2 and simplify this matrix further by using
the same units (meters per second) for the planar and angular
acceleration. Instead of operating with ω̇ we can work with Rω̇.
The new expression is then

(
ax

ay

Rω̇

)
=

1

M

(−sin θ1 −sin θ2 · · · −sin θn

cos θ1 cos θ2 · · · cos θn
1
α

1
α

· · · 1
α

)
f1

f2

...
fn

We call the 3× n matrix in the expression above the force cou-
pling matrix Cα.

Given any four motor states (and the associated torques) it
is then straightforward to compute the acceleration in the x and
y directions, as well as the tangential acceleration of the robot’s
frame periphery.

We are assuming here that the wheels cannot slip, that is,
all the torque from the motors is transmitted to the robot via
the floor. This is an unrealistic assumption which we discuss
later.

2.2 Euclidean magnitudes

We can compute the final velocities of the wheels, and the ve-
locity of the robot on the plane, as well as its angular velocity,
by integrating the movement equations with respect to time.
However, we have to think of the robot in Euclidean space,
compute its trajectory there, and derive from this the velocity of
each individual wheel. First let us look at the geometry of the
problem.

Let us group the individual speeds of the four motors in the
vector (v1, v2, . . . , vn)T and the Euclidean velocity and tangen-
tial rotational speed of the robot in the vector (vx, vy, Rω)T.
If the robot is moving as determined by the vector (1, 0, 0)T,
this means that it is moving sideways without rotating. When
the robot moves with speed 1 to the right, the i-th wheels ro-
tate with speed −sin θi. This is easy to see from the diagram
in Fig. 3. The large wheel provides one of the components
of the horizontal movement (that is, −sin θi), while the small
peripheral wheels provide the other orthogonal component (i.e.
cos θi).

The same kind of computation can be done when the robot is
moving forward without rotating. The wheel movement is then
the component cos θi. Using the convention that the positive
rotation direction is the direction of the right-hand thumb when
we hold the motor axis in the hand, we obtain the following

Page 2

Figure 3: Rotation of large and small wheels, when the robot
moves sideways with speed 1. The main wheel rotates with
speed − sin θi, the small wheels with speed cos θi.

expression for the correspondences between the Euclidean and
motor speeds:

v1

v2

...
vn

 =

−sin θ1 cos θ1 1
−sin θ2 cos θ2 1

...
...

...
−sin θn cos θn 1

(

vx

vy

Rω

)

The matrix in this expression is very similar to the transpose
of the coupling matrix Cα. This matrix, which we denote by
D, is the velocity coupling matrix. If the rank of the coupling
matrix is at least three, then for any given Euclidean combination
(vx, vy, ωR)T, there is a combination of motor speeds which can
produce such movement.

Let us denote the acceleration vector (ax, ay, Rω̇)T by a,
the force vector (f1, f2, . . . , fn)T by f , the vector (vx, vy, Rω)T

by v, and the vector of motors speeds (v1, v2, . . . , vn)T by m.
Then the following identities hold

a = Cαf and m = Dv

Integrating over a time interval ∆t, we have ∆v = ∆t× a, that
is,

∆m = ∆t×DCαf.

The motors have tick counters which allow to measure their
speed in real time with the on-board electronics. For the purpose
of controlling the robot, we want to know how measured wheel
speeds m = (v1, v2, . . . , vn)T map to the Euclidean magnitudes
v = (vx, vy, Rω)T, that is, we would like to invert the expression
m = Dv. This is not possible in general because the matrix D
is not a square one, and therefore, is not invertible. However,
we can look for the pseudoinverse matrix D+ and with m = Dv
the equation

D+m = (D+D)v = I3v = v

is valid. It can be easily shown that the matrix has always a
rank of 3. It can also be proven that when the rank of an n× 3
matrix D is three, the product D+D is the 3×3 identity matrix
I3.

The matrix D+, therefore, maps motor speeds to Euclidean
velocities correctly. This is a formal proof of what we have been
arguing in this paper, that three omnidirectional wheels, at three
different angles, are sufficient for omnidirectional driving. The
rest of the wheels (n− 3) provide redundancy to the system.

Summarizing: given the force coupling matrix Cα and the
velocities coupling matrix D, we can transform:

• motor forces into Euclidean accelerations: a = Cαf
• Euclidean accelerations into motor forces: f = C+

α a
• Euclidean speeds into motor speeds: m = Dv
• motor speeds into Euclidean speeds: v = D+m

3 Accurate Driving

It is possible to control an omnidirectional robot perfectly with
the previously introduced methods if the friction between the
wheels and the floor is infinite. However, in the real world
the friction and thereby the acceleration of the robot is limited.
First, we show how a slipping wheel can be detected by evaluat-
ing the wheel velocities. With this information, the motor forces
can be reduced to prevent slippage.

Figure 4: Arrangement of the wheels and distribution of forces
in a symmetrical robot with 4 wheels. The same angle ϕ for
each motor axis is used.

3.1 Identifying slipping wheels

Let us consider a symmetrical robot (see Fig 4). Let us call m
the four-dimensional vector (v1, v2, v3, v4)

T of tangential mo-
tor speeds, D the velocities coupling matrix, and v the three-
dimensional vector (vx, vy, Rω)T. The fact that the Euclidean
velocities of the robot and the tangential velocities of the motors
are connected by the expressions

m = Dv and v = D+m

gives us the possibility of testing for inconsistencies in the motors
speed and thus detect wheel slippage.

The controller on the robot gets the desired vector v by ra-
dio communication and transforms v into the necessary motor
currents. After some time, the tick counters in the motors pro-
vide a vector of current motor speeds m′. We can test if wheels
are slipping using the in-built redundancy of our motor values.
Since v′ = D+m′ and m′ = Dv′, then it must be true that
m′ = DD+m′. If not, then one or more wheels are slipping on
the ground. It would be extremely unlikely that they all slip at
a rate which allows the expression to remain valid.

A simple computation shows that for a symmetrical robot
with angle ϕ:

DD+ =
1

4

 3 1 −1 1
1 3 1 −1

−1 1 3 1
1 −1 1 3

Page 3

Checking spinning wheels can be done very easily by multiplying
with this matrix, because we should obtain (I −DD+)m′ = 0.
The matrix I −DD+ is given by

I −DD+ =
1

4

 1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

The consistency check, as this matrix shows, reduces to the test

v1 − v2 + v3 − v4 = 0

or equivalently
v1 + v3 = v2 + v4

that is, the sum of the speeds of motor 1 with its opposite
motor 3, is equal to the sum of the speed of motor 2 with its
opposite motor 4 (see Fig. 4 for the numeration of the motors).
The speeds used before, that is fr = (1, 1, 1, 1)T for rotation,
ff (1,−1,−1, 1)T for going forward, and fs(−1,−1, 1, 1)T for
driving sideways, all fulfill the above consistency check. Any
linear combination of them passes also the consistency check.

It is interesting to note that this slippage check does not
depend on the angle ϕ. It is a universal test for omnidirectional
four motor autonomous robots, with wheels placed symmetri-
cally at an angle ϕ.

Slippage check can be also computed for any other con-
figuration of n motors. We just have to compute the matrix
(I − DD+), and this provides the check we need. Consistent
motor speeds m satisfy all the condition (I −DD+)m = 0.

In the case of an asymmetrical robot with motor axis at
angles ϕ and θ, we can also compute algebraically the matrix
(I −DD+).

3.2 Energy-saving Driving

If we detect that the wheel rotation is not consistent, that is,
that one or more wheels are wasting energy or slipping by false
motor forces, can we do something about it? As this section
shows, under certain conditions we can correct the motor control
values without control losing time. Let us consider a symmetrical
robot with the same angle ϕ for all motor axes with respect to
the horizontal.

First, note that there are motor torque combinations which
do not accelerate the robot. One such combination, for a sym-
metrical robot, is fk = (1,−1, 1,−1)T. The wheels pull in the
forward and backward direction simultaneously. In such a case,
the Euclidean magnitudes are zero, i.e.

a = Cαfk = 0

This means that the vector fk is an element of the kernel of Cα

(the set of vectors mapped to zero by this matrix).
Interestingly, if we have two combinations f and f ′ of motor

forces which produce the same Euclidean accelerations a, then
a = Cαf and a = Cαf ′. Therefore

Cα(f − f ′) = 0

is true. This means that f − f ′ belongs to the kernel of Cα.
Also, if a vector g belongs to the kernel of Cα, then the vector of

forces f produces the same accelerations as the vector of forces
f + g because

a = Cα(f + g) = Cαf + Cαg = Cαf

For a robot with four wheels the rank of the matrix Cα is
exactly 3 (see chapter 2). Since the sum of the rank of an n×m
matrix and the dimension of the kernel is equal to max(n, m),
this means that the dimension of the kernel of Cα is one. This
in turn implies that any vector in the kernel of Cα is of the
form λfk. Curiously enough, this is equivalent with every row
in the matrix (I−DD+) computed in the previous section for a
four-wheeled symmetrical robot. What this means is that motor
speeds m = (v1, v2, v3, v4)

T are consistent if they are orthogonal
to the kernel of the matrix Cα, that is, to all vectors of the form
λfk. Motor speeds are inconsistent if they include a projection
in the direction of the vector fk. The solution? If we have
inconsistent motor speeds m = (v1, v2, v3, v4)

T, we compute
the projection of m in the direction of the unit vector 1

2
fk and

subtract it from m. The corrected m is thus:

m′ = m− (m · 1

2
(1,−1, 1,−1)T)

1

2
(1,−1, 1,−1)T

The correction can be simplified to

m = m− v1 − v2 + v3 − v4

4
(1,−1, 1,−1)T

We can visualize this result as follows: in the four-dimensional
space of motor values, there is a three dimensional subspace of
consistent and non-slipping motor values (a three-dimensional
hyperplane). Normal to this hyperspace we have the vector of
wheel speeds (1,−1, 1,−1). Anytime wheels are slipping, we
are wasting energy because the vector of motor values contains
a component in the (1,−1, 1,−1) direction. What we have to do
is to orthogonally project the vector of motor values back onto
the hyperplane of consistent motor values, by just subtracting
the component in the (1,−1, 1,−1) direction.

Incidentally, when we map Euclidean accelerations a to mo-
tor forces f , we always obtain consistent results because we use
the expression

f = C+
α a

Since Cα and C+
α are both of rank three, accelerations a (in

three-dimensional space) are mapped one-to-one to forces f (in
a three-dimensional subspace of the four-dimensional space). If
this three dimensional subspace would include any element g
of the kernel of Cα, then there would exist an acceleration a,
different from zero, such that g = C+

α a. Since Cαg = 0, then
we would not have a = CαC+

α a, as we should have.
Also, if g belongs to the kernel of Cα, any force of the

form f + g is equivalent to f , because Cαf = Cα(f + g).
For an acceleration a, there is a unique force f such that f =
C+

α a. Since f is always smaller in length than f + g (because
g is orthogonal to the subspace where f lives), we have the
optimal situation where the forces computed require the minimal
consumption of energy. Motors do not waste energy, when force
combinations in the kernel of Cα are avoided.

Page 4

4 Driving a real robot fast and ac-
curate

Assume that we want to drive our robot forward, trying to avoid
any significant wheel slippage. Assume that it has been deter-
mined experimentally that when the voltage for the DC motors
is a maximum of 2 Volts the wheels will not slip (we can do this
by holding the robot, and increasing the voltage until the wheels
start to slip). We would like to drive as fast as possible (that is,
with the maximum possible voltage for the motors) but without
slipping. What we have to do then is to start the motors with
V0 = 2 and let the robot roll forward. After a few milliseconds,
the induced current E in the rotor decreases the effective volt-
age on the rotor’s solenoid to V0 − E, and the motor torque
correspondingly. We can now increase the value of the voltage
to V1 = V0 + E, and now the motor torque corresponds to the
effective voltage V0 + E − E = V0. Repeating this adjustment
periodically, allows us to drive the motors with the maximum
possible torque which does not let the wheels slip.

However, this consideration depends on a perfect mass dis-
tribution so that all wheels exert the same pressure on the floor.
This assumption cannot be guaranteed when the robot is driving
fast, because acceleration can lift sometimes the front or side
wheels from the floor, or at least diminish the pressure they exert
on the floor. Slipping wheels are a fact of life and they have to
be handled in the PID controller.

4.1 PID controller

In our previous system, we sent the desired final linear velocity
(vx, vy) to the robot and accelerated the wheels using one PID
controller for each direction. A third PID controller received the
desired final angular velocity ω and controlled the wheels. All
PID controllers were interleaved. The wheel accelerations over-
lapped and we obtained the desired robot behavior. However,
all parameters for the PIC controller must be set to adequate
values to achieve fast acceleration of the robot in combination
with low slippage. This can be done by experiments, heuristics
or learning methods [6].

The above method works well if the robot accelerates slowly.
The PID corrects the deviance from the desired behavior au-
tonomously. The disadvantage of this method occurs in the case
of a slipping wheel because the controller corrects then the con-
sequences in a false way. An example: let us send v = (0, 1, 1) as
command to a still standing symmetrical robot. For a short time
∆t the velocities are ∆m = ∆t(1,−1,−1, 1). If the first wheels
slips its force does not take effect on the robot, but it accelerates
very fast. After ∆t the tick counters measure ∆t(2,−1,−1, 1)
as wheel velocities. This value is calculated by using D+ back to
robot velocity v′ = ∆t(− 1

sin ϕ
, 1

cos ϕ
, 1). On the other hand, the

effect of the slipping wheel on the robot is f = λ(0,−1,−1, 1)
with λ > 0 and robot’s acceleration is given by:

a =
λ

M
(sin ϕ, 3 cos ϕ,− 1

α
)

For the short time ∆t we have the velocity

v′′ = ∆ta =
∆tλ

M
(sin ϕ, 3 cos ϕ,− 1

α
).

If we compare the measured velocity v′ with the real velocity
v′′ we see that they are opposed to each other. Thatswhy the
correction by the PID controller will go into the false direction
because its calculation is based on the measured velocity.

There are two possibilities to avoid this problem is either
to detect slipping wheels or to use one PID controller for each
motor and not for every degree of freedom of the robot, what
we do in our present system.

4.2 Control loop and correction

Normally, the robot is controlled and observed externally. In our
system, for example, a camera is receiving images from the the
top of the robot and the system calculates the exact position and
orientation of the robot (see [3] for a full description). There
is also always a delay in the system between sending commands
to the robot and observing their impact. That means, that the
robot always conducts commands which were calculated based
on old data and that it can move in the meantime more than half
a meter. In order to cancel this effect we are using a prediction
system. It predicts the position and orientation of the robot
after the delay, based on the behavior of the robot and the last
sent commands [1].

However, the prediction system can be used also for correct-
ing the robot movement in other cases. The expected behavior o
the robot can be compared with its real one and if the robot be-
haves strange, its control commands can be corrected [5]. The
desired wheel velocities m = (v1, v2, v3, v4) are calculated from
the given velocity vector v = (vx, vy, Rω) by m = Dv with the
velocity coupling matrix D. But to compensate the driving error
the velocity vector v is modified. This modification is learned
by observing the behavior of the robot over a certain time.

4.3 Driving without one motor

It can happen that a robot loses one of the four motors because
of a hardware failure. The advantage of a four motor robot is
that it can recover from such a loss. It can continue to drive
accurately and can still behave as an omnidirectional robot.

Assume, for example, that the first motor in Fig. 4 mal-
functions. The wheel can still roll, but the motor does not
provide torque. In that case in the set of motor forces f =
(f1, f2, f3, f4)

T, f1 is always zero. However, the three remain-
ing motors can still drive the robot forward, sideways, and can
let it rotate. Furthermore, the necessary motor torques are in-
dependent. The vector f̂f = (0, 0,−1, 1)T of motor forces
moves the robot forward without letting it rotate, the vector
f̂s = (0,−1, 1, 0)T moves the robot sideways to the right with-
out letting it rotate, and the vector of forces f̂r = (0, 1, 0, 1)T

rotates the robot counterclockwise, without displacing its center
of mass. It is easy to see that these (and multiples of them) are
the only torque combinations with such properties. Note also
that for every desired direction there is always another inactive
motor beside the malfunctioning one.

As before, we can decouple the displacement of the robot
from the rotation. We modify the control strategy for the motor
values. We can drive the robot in the direction (vx, vy) by
setting a combination of forces proportional to

vx

sin(ϕ)
f̂s +

vy

cos(ϕ)
f̂s.

Page 5

The robot will accelerate in the desired direction, and the two in-
active motors will roll passively, without causing major problems.
On top of that movement, we can let the robot rotate using any
multiple of the vector of forces f̂r. Of course, the robot will be
only half as fast as before, because we will be using only half of
the motor power, but the robot will be still manageable.

Fig. 5 shows an experiment of a symmetrical robot with one
non-working motor (motor 1) with and without correction of
the robot velocities commands (as explained in 4.2). As can be
seen, the robot moves accurate in the top-right and down-left
direction also in the uncorrected case, because in these directions
motor one is not involved in the movement.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Damaged robot without correction

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Damaged robot with correction

Figure 5: Star driving robot without one motor controlled with-
out modifications of the desired motor velocities (left) and with
correction (right). The wheels of the robot are symmetrical ar-
ranged with an angle ϕ of 45o.

If two, even three, motors are damaged it is still possible to
drive the robot, but it ceases to be omnidirectional. In that case
the high-level control must be changed in order to control the
robot.

5 Related Work

Many researchers use PID controllers to reach the desired motor
speed [2, 4, 7]. They use an inverse kinematics model for three or
four wheels to calculate the desired wheel velocity or a dynamic
nonlinear model of the robot [16]. Other researchers even use
PID controllers for the translation and the rotation of the robot
[14, 8]. Oubbati et al have replaced the PID controllers for the
motors with a recurrent neural network to convert the desired
wheel velocities to PWM commands [11]. The robots in these
papers steer very slowly, hence wheel slippage does not appear
and can be let unconsidered in these models.

The very fast Cornell Big Red team uses a simple dynamic
motor model and an inverse kinematic model to generate bang-
bang trajectories to move very fast to a given location with
a three or four wheeled omnidirectoinal robot [10, 12]. The
acceleration limit in there models is only the torque of the motors
with respect to the velocity and not the friction between the
floor and the wheel. For control, the robots are equipped with
gyroscopes to measure the movement of the robot [13]. This
method is much more accurate than measuring the movement
indirectly with motor tick counters, because slippage can not
influence the calculation.

Williams et al. measure the friction between omnidirectional
wheels and carpet and also between wheels and paper[15]. They
use a simple friction model for simulation and compare the re-
sults of the simulation with a fast accelerating and thereby slip-

ping real three wheeled omnidirectional robot. The intention
of the paper is to model and understand the sliding dynamics
problem and not the real-time control of the robot, in contrast
to the here presented work.

6 Conclusion

In this article we showed how to optimally control an omni-
directional robot. We presented the physical and theoretical
foundations for controlling a n-wheeled robot and demonstrated
practical experiences and problems. The major problems when
driving an omnidirectional robot are to detect and handle wheel
slippage and to handle the failure of motors. We presented
methods for both avoiding and handling wheel slippage, as well
as how to drive accurately without one motor. We are using all
of the mentioned approaches successfully in our small size and
middle size RoboCup robots. It is of course a required but not
a sufficient share for best results in playing robot soccer.

Acknowledgements

This work was supported by the German Research Foundation
SSP 1125 and partially funded by EU project FP6511931.

References
[1] S. Behnke et al.: “Predicting away the Delay”, RoboCup-2003:

Robot Soccer World Cup VII, Springer-Verlag, 2004.

[2] D. J. Daniel et al.: “Kinematics and Open-Loop Control of an
Ilonator-Based Mobile Platform”, Proc. of the IEEE Int. Conf.
on Robotics and Automation, 1985.

[3] A. Egorova et al.: “FU Fighters Small Size Team 2004”,
RoboCup-2004: Robot Soccer World Cup VIII, Springer-Verlag,
2005.

[4] D. Feng et al.: “The Servo-Control System for an Omnidirec-
tional Mobile Robot”, Proc. of the IEEE Int. Conf. on Robotics
and Automation, 1989.

[5] A. Gloye: “Learning Methods for Autonomous Mobile Robots”,
PhD thesis, Freie Universität Berlin, 2005.

[6] A. Gloye et al.: “Learning to Drive and Simulate Autonomous
Mobile Robots”, RoboCup-2004: Robot Soccer World Cup VIII,
Springer-Verlag, 2005.

[7] L. Huang et al.: “Design and Analysis of a Four-wheel Omni-
directional Mobile Robot”, Proc. of the 2nd Int. Conf. on Au-
tonomous Robots and Agents, 2004.

[8] Y. Liu et al.: “Omni-Directional Mobile Robot Controller Design
by Trajectory Linearization.” Proc. of the 2003 American Control
Conference, 2003.

[9] F. v. Hundelshausen et al.: “FU-Fighters Team Description
2003”, RoboCup-2003 - Proc. of the Int. Symposium, 2003.

[10] T. Kalmár-Nagy et al.: “Near-optimal dynamic trajectory gen-
eration and control of an omnidirectional vehicle”, Robotics and
Autonomous Systems, vol. 46, no. 1, Elsevier, 2004.

[11] M. Oubbati et al.: “Velocity Control of an Omnidirectional
RobCup Player with Recurrent Neural Networks”, RoboCup-
2005 - Proc. of the Int. Symposium, preprint, 2006.

[12] O. Purwin et al.: “Trajectory Generation and Control for Four
Wheeled Omnidirectional Vehicles”, Proc. American Control
Conference, 2005.

Page 6

[13] O. Purwin et al.: “RoboCup 2003 Team Description: Cornell
Big Red 2003”, 2003.

[14] K. Watanabe et al.: “Feedback Control of an Omnidirectional
Autonomous Platform for Mobile Service Robots”, Journal of
Intelligent and Robotic Systems, vol. 22, no. 3–4 , Kluwer, 1998.

[15] R. L. Williams et al.: “Dynamic Model With Slip for Wheeled
Omnidirectional Robots”, IEEE Tr. on Robotics and Automation,
vol. 18, no. 3, June 2002.

[16] L. Wilson et al.: “Design and Modeling of a Redundant Omni-
directional RoboCup Goalie”, Proc. RoboCup 2001 Int. Sympo-
sium, 2001.

Page 7

