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PART 2 – Management Overview 

Document Control 

This document is a co-production of all the partners mentioned above. First, contributions from all the 
partners were gathered (initiated on 12.03.2007, but already mentioned at the meeting in October and 
December 2006 and also by Rino Falcone in February 2007). This document includes all descriptions 
received until 05.04.2007. The responsible author put the information together and provided an 
overarching perspective of the achievements within the workpackage. The first draft version was sent 
to all authors for verification (11.04.2007). The final version was presented to the program coordinator 
on 13.04.2007.  

Executive Summary 

This document provides an overview over all developed systems, implementations, simulations, and 
evaluations relevant to Workpackage 4: Goal-directed behavior, pro-activity, and analogy. The 
workpackage is mainly concerned with anticipatory (goal-directed) action decision making and action 
control that is controlled by predictions and analogical reasoning. Thus, work is included that assesses 
the benefits of anticipatory processing mechanisms, classifies anticipatory mechanisms for behavioral 
control, or applies anticipatory behavioral control mechanisms in simulated or real robot 
environments. The results provide a broad spectrum of successfully accomplished system 
enhancements of anticipatory processes in different cognitive architectures. Additionally, advanced 
conceptualizations of anticipatory processes and anticipatory behavior were developed. This 
deliverable gives an overview over the accomplishments in the MindRACES project. However, also 
work in progress is reported, which, due its partially highly challenging character, may be continued 
beyond the boundaries of the project, which is scheduled to end at the 30th of September 2007.  

While the previous deliverable in workpackage 4 (Del. 4.1, i.e., Del 5) showed the commonalities 
of various systems the MindRACES partners were interested in, this workpackage points out 
successful system combination due to successful collaborations and comparative studies between 
various MindRACES partners. Many suggested potential collaborations and system combinations 
from deliverable 4.1 were successfully carried through and were being published or are close to 
submission or publication. The general challenge to combine the various systems, investigate their 
anticipatory capabilities, and consequently develop more anticipatory cognitive embodied systems was 
met in several respects as outlined in this deliverable. 
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PART 3 – Deliverable Content 

1 Introduction 

While deliverable 4.1 (#5) reported multiple facets of predictive and anticipatory systems, this 
deliverable focuses on the conceptual and system advancements achieved by the partners over the last 
two years. We focus on published or submitted articles but also mention work that is still in progress. 
Before moving on to the individual contributions, we provide a short overview over the different 
facets of anticipatory behavior for goal-directed behavior, pro-activity, and analogy making.  

In deliverable 4.1, we distinguished various anticipatory capabilities of the project-relevant 
systems. These systems included (1) the DYNA architecture and related systems such as the 
XCS/XACS, NN-based DYNA models, and the artificial immune system architecture (AIS). (2) 
Inverse model-based systems as well as the inverse gradient method that can exhibit goal-initiated 
behavior, that is, behavior that is triggered by the activation of a current (reachable) goal. In the case 
of inverse gradient methods, the behavior may also be combined with reinforcement learning 
capabilities. (3) Context-based systems provide a useful tool of how to include context information to 
guide and direct anticipatory mechanisms not only for attention processes but also for consequent 
action decision making and action control mechanisms. (4) Analogy-based systems, such as the 
AMBR architecture, are useful to study analogy making in relation to anticipatory behavior. (5) 
Recurrent neural network approaches, such as LSTM and others, finally were relevant to learn 
efficient dynamic predictions and classifications .However, their impact on anticipatory behavior 
remained unclear. 

Deliverable 4.1 pointed out that besides model learning improvements, several anticipatory 
behavior capabilities required further research effort. These included the further development of 
inverse modeling capabilities. Hereby, it was expected that adaptive robotic applications will be of 
interest and that inverse gradient approaches could help to further improve learning of such inverse 
models. Second, we identified behavioral adjustments due to unexpected sensory inputs as a target for 
further research effort. Third, directed, task-dependent planning mechanisms were mentioned as an 
additional beneficial target of anticipatory behavior research effort. Fourth, the coupling of 
motivational mechanisms with behavioral decision making and control poses additional challenges. 
Fifth, while curious behavior had been implemented before, successful epistemic actions had not been 
shown in any of the relevant architectures gathered in the previous deliverable. 

This short overview indicates that there remained lots of work concerning anticipatory behavior 
with respect to goal-directed behavior. We now present the advancements made over the last two years 
that address all of these issues. Albeit certainly never done and over, all the efforts provide some bits 
and pieces of how anticipatory behavior can be improved with respect to the five types of system 
approaches and with respect to the behavioral aspects summarized above. 

2 Advancements of Predictions and Anticipations 

2.1 Predictive Particles: A Novel Approach for Efficient Predictions In Non-Markov 
Environments (OFAI) 

2.1.1 Idea  

To develop more predictive capabilities and model fuzzy predictions in an environment with obstacles, 
the Predictive Particles (PP) approach assumes that a robot and a moving target act in a known 
environment. Obstacles, predominantly walls, may hinder free view and motion. The task of the robot 
is to anticipate a possible location of reappearance, if the target is currently hidden. The belief about 
the current state of the target can be expressed as a time-dependent probability function, which itself is 
estimated by a sample of particles.  

So far, it was assumed that the robot has a complete map of the environment. The robot uses its 
own observations to localize itself and the target. All its observations of the target are transformed into 
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the world view and are used to establish a motion model within the world view. It is assumed that, 
given the map of the environment, the motion dynamics of the target are fully described by its current 
location and its velocity vector. In particular, the target does not take notice of the robot and will not 
adapt its behavior depending on actions of the robot. Furthermore the behaviour of the target will 
always depend only on its current movement within its immediate neighborhood. 
 
 

 
 
Particle filters are becoming more and more popular in the robotics community. Thrun et. al (p.437, 
2000) mention "that particle filters are at the core of some of the most effective robotics algorithms". 
In chapter 13, particle filters are used to treat the SLAM (Simultaneous Localization and Mapping) 
problem, but here, in our approach, the robot needs to localize itself. Approaches using particle filters 
for target tracking have already been proposed: Schulz et al. developed a hybrid version using particle 
filters to simultaneously predict the trajectories of multiple (but visible) objects. 

The approach of Mottaghi et al. (2006) is similar to one pursued. They assume that an intruder 
should be tracked down. The current position of the intruder is approximated by a sample of particles. 
Mottaghi et al. (2006) put the emphasis on the cooperation of several robots.  Their dynamic model to 
extrapolate particle positions differs from our model mainly in the point that the model from Mottaghi 
et al. (2006) always uses the current position of particles, whereas our approach also use forecasted 
positions. Therefore, their model differs mainly in the way, how the direction to which the robot(s) are 
supposed to proceed is generated.  

2.1.2 Particle filters 

Applying a particle filter is an alternative nonparametric implementation of the Bayes filter (for an 
elaborate description see e.g. Thrun et al., 2000). The object of interest is the current belief about the 
state of the target, expressed by a probability distribution over location and velocity. As time passes 
by, the probability distribution of the state of an unobserved target becomes more and more 
complicated. The presence of obstacles generates multimodal distributions, as the target might have 
taken either of both ways to pass the obstacle. Particle filters approximate this complicated posterior 
distribution of the state by a sample of particles distributed according to this distribution.  

In the case of a visible target, particles whose locations are nearer to the observed location, get 
higher weights. Strictly speaking, we should have used also the similarity between particle velocity 
and measured velocity to calculate the weights, as a particle with the correct location but wrong 
velocity will still get a high weight. If we assume that the target can be observed for 2 or more time 
steps, such a particle will vanish with high probability, and it is usually safe to work with only the 
location. If the target is invisible, those particles which are “visible” get a low weight, which might be 
even zero, and all “hidden” particles get a higher weight, as they do not contradict the observation. 
The cloud of particles tends to be relatively narrow (depending on the quality of sensors), if the target 
is visible, and starts to grow for an invisible target.  
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2.1.3 Motion of the robot 

The approach assumes that the main task for the robot should not be the hunting of a visible target, but 
to anticipate the next appearance, assuming that walls often do not allow an unobstructed view of the 
target. The decision, whether the robot will be able to catch the target at the forecasted position 
depends on the distance from the robot to this point and on the forecasted time span the target might 
need to reappear. As it is assumed that the robot can estimate the velocity of the target and knows its 
own velocity, it can calculate the time needed to reach this point and also, whether the robot is 
sufficiently fast. In the case that the time is too short, the robot could decide to forecast even further 
and wait for the next attempt to catch the target. As the amount of calculations grows linearly with the 
forecast horizon, this approach is not pursued, though. Rather, it is assumed that the robot is 
sufficiently fast. Thus, sending him to the forecasted location of reappearance will usually at least 
decrease the distance to the target.  

In sum, the robot "thinks" only in particles. Actually observing the target gives the possibility to 
improve the current quality of the particle representation of the true state. Any intended motion just 
relies on the particle locations. ´Thus, a reactive behavior is assumed in the sense that the robot will try 
to follow particles if they are visible, which means that the robot does not view any obstacles between 
his and the particle position. 

If the robot follows any visible particle and the target does not appear, then the visible particles 
will most likely vanish after a short time, as their weights are 0 or at least lower than the weights of 
hidden particles. In this case there will be no visible particle to follow, but we can still work with the 
hidden particles. The robot has an internal representation of all particles that allows him to simulate 
possible trajectories. In this internal representation it also could "see" particles which are in reality 
behind his back.  

The robot tries now to follow the particles which, in his internal representation, are immediately 
visible. The robot is turning and moves to available particles in his back. But after a short time, even 
those virtual particles, which, after turning, transform into "real" visible particles might disappear, if 
the target couldn't be found. We assume now that the robot starts to extrapolate and simulates future 
trajectories of all particles. It could follow different guidelines and could stop this procedure, if e.g. at 
least one of the extrapolated hidden particles re-appears or all of the particles re-appear. 
 

 

2.1.4 Experiments in simulated worlds 

The main simulation effort focused on an artificial world with a ball moving behind a single wall. The 
ball physics were chosen according to the law "angle of reflection equals angle of incidence", the 
accuracy of the vision system was assumed to be high, which is equivalent to rapidly decreasing 
weights by increasing distances between particles and target. The next figure illustrates the different 
phases which occur.  
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As long as the robot can observe the ball, the particle cloud tends to be small (a). If the ball vanishes, there 
might be some visible particles to which the robot could walk to, but they disappear within a few steps (b). 

If all particles are invisible (c), the robot moves immediately to the nearest visible extrapolated particle, 
which from now on happens to appear at the right end. The size of the cloud grows (d). When the first 

particles become visible at the right end, the robot moves to the nearest of them. As long as the ball is not 
visible, these particles tend to disappear (e). Finally, the ball reappears, and the particle cloud shrinks 

again (f). 

2.1.5 Ongoing: Experiments in the real world 

Besides various advanced simulations (not mentioned here), experiments with a single wall on the 
AIBO robot were performed. In this setting another obstacle was placed sometimes (~20 percent of all 
cases) behind the right edge of the wall. Hitting the obstacle produces a noise which is almost always 
louder than ambient noise. An additional system with two thresholds was used to decide whether an 
obstacle has been hit. When the amplitude of the noise signal was lower than the lower threshold, the 
probability of a particle of having reversed its direction is 0, if the amplitude is higher than the upper 
threshold the probability was set to1. In between the two thresholds, the probability was linearly 
interpolated. Usually it was safe to set both thresholds to the same value.  

Three problems arose: AIBOs camera only recorded 15 frames per second, and additionally 
some of the frames were identical, sometimes 4 frames in a row, and estimation of velocities was not 
straightforward. Sound was delayed up to a third of a second and we were not sure, whether the delay 
was always the same. For the mentioned experiments, we replaced AIBO by a stationary camera with 
30 frames per second and took then every 4th frame. The sound delay was neglible. 

The third problem was that the noise when hitting the obstacle lasts longer than one frame. As a 
solution we introduced an interval after the first appearance of a high amplitude (higher than the 
threshold) for which the acoustic signal was ignored. 
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The four figures show in the upper left the observed scene, the extracted objects in the upper right, the 
current estimate of the ball position (bottom left) and the sound during the whole run with the red circle 

indicating the current time (bottom right). 
 

The ball position estimate is green for all particles going to the right and red for the opposite 
direction. A kernel was used to construct a density for both cases. When the ball hits the obstacle in 
the second picture, the direction of nearly all particles is reversed. The ball returns and is finally 
visible again. If the ball is visible, the width of the density is much smaller (last picture). 

2.1.6 Summary and possible extensions 

The algorithms were designed to combine anticipatory behavior with reactive behavior. Therefore, the 
robot only finds targets that are or will be visible from the current viewpoint (or from viewpoints 
which might be generated during the motion of the robot). Equipped with this algorithm, the robot 
does not have the capacity to find a target with known location that stopped behind a wall. The robot 
might find the target nonetheless in the case that particles will reach the ends of the wall often enough 
to draw the robot to one of both ends, from which it might see the target itself. 

So far, non-decreasing velocity models were considered. If absolute velocity was allowed to 
decrease, e.g. due to friction, until it reaches zero, then the particles will come eventually to a stop. If 
the friction is so high that not a single hidden particle re-appears, the current algorithm needs to be 
further enhanced such that the robot was able to reach any given coordinate, visible or hidden. During 
the extrapolation part, for each forecast horizon a location coordinate is calculated from the simulated 
particle trajectories. With the help of an additional algorithm, a path may be constructed and the length 
of this path may be calculated. If the robot is sufficiently fast to reach the location within the given 
time, the direction along the path is chosen. Of course, even more sophisticated algorithms can be 
developed, e.g. algorithms that maximize the probability to catch the target. The simulated particle 
trajectories could be helpful for this task, as they might be used to estimate probabilities of having a 
distance lesser than a given distance to the true position of the target. 
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2.2 Advaced Predictive Capabilities in the XCS Classifier System (UW) 

A more theoretical account of system predictability was achieved by the advancement of the function 
approximation capabilities of the XCS system (Butz, Lanzi, & Wilson, 2006, in press). We showed 
that XCS’s performance can be improved in three ways. (1) Faster and more accurate linear 
approximation with efficient RLS stabilized and improved performance. (2) The representation of the 
classifier condition improved function approximation, in this case preventing unsuitable classifier 
overlaps. (3) The operators in the evolutionary process were optimized to enable faster learning by a 
more directed evolutionary process. In sum, XCS performance can be improved by optimizing 
gradient-based approximation, classifier representation, and the evolutionary process.  

Moreover, we introduced a new compaction mechanism to XCSF. The mechanism is based on 
closest classifier matching (CCM) plus condensation (neither mutation nor crossover in the GA 
application). In CCM, a fixed number of closest classifiers match, where closest is defined by the 
distance measure evolved for each classifier. CCM prevents the generation of holes in the function 
approximation surface during compaction. Meanwhile, condensation causes the propagation of well-
shaped accurate classifiers and the deletion of overlapping inaccurate classifiers. The mechanism was 
able to decrease population sizes by often more that 80% hardly affecting performance accuracy. An 
additional greedy compaction algorithm, which iteratively deletes classifiers that overlap with low-
error classifiers, was shown to be able to compact the population by often more than 90% on 
average—albeit with a slight accuracy decrease in non-differentiable or highly irregular functions. 

Results showed that the improvements enabled XCSF to solve function approximation problems 
of up to seven dimensions with highly compact final representations. Moreover, XCSF was shown to 
be noise robust and able to generalize well to unseen problem instances. In general, it was highlighted 
that XCSF is a learning mechanism that clusters the problem space to ensure maximally accurate 
approximations in the experienced subspaces. It outperforms general clustering algorithms, such as 
Neural GAS (Martinetz, 1993), in function approximation tasks, and it approximates and partially 
outperforms more directed, iterative function approximation mechanisms published elsewhere (Potts, 
2004, Schaal, Atkeson, 1998). 

In conclusion, XCSF was shown to be a flexible, easily adaptable learning system, which is 
applicable to many types of predictive tasks, and particularly to tasks that can be approximated with 
local, partially-overlapping gradient-based estimates. Future work will evaluate the XCSF 
enhancements in datamining tasks as well as in reinforcement learning problems. Moreover, the 
mechanism is planned to be integrated into a cognitive systems architecture, in which the predictions 
manipulate neural gates in a recurrent neural network structure. In this case, the predictive capabilities 
are planned to be evaluated on a visual processing and attention focusing task, in which moving 
objects are tracked and their velocity as well as type of object will be extracted (See also the 
hierarchical visual tracking task described in deliverable 4.1). Albeit the accomplishment of this 
endeavour will most likely extend over the boundaries of the MindRACES project, the gained insights 
in the predictive capabilities and the high learning flexibility of XCSF will be invaluable for its 
success.  

2.3 Policy Gradients (IDSIA) 

Wierstra, Förster, & Schmidhuber (submitted) are working on a solution for deep memory POMDPs 
with recurrent policy gradients. The paper presents Recurrent Policy Gradients, a model-free 
reinforcement learning method that creates limited-memory stochastic policies for Partially 
Observable Markov Decision Problems (POMDPs) that require long-term memories of past 
observations. The approach involves approximating a policy gradient for a recurrent neural network by 
backpropagating return-weighted characteristic eligibilities through time. By the usage of a “Long 
Short-Term Memory” architecture, it was possible to outperform other reinforcement learning 
methods on two important benchmark tasks: double pole balancing task with incomplete state 
information and the long term dependency T-maze task. Furthermore, good results were shown in a 
complex car driving simulation task (TORCS racing car simulation).  
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The TORCS racing car simulation. 

2.4 Reinforcement Learning for Robot Navigation (IDSIA) 

Besides policy gradients, also reinforcement learning itself was further investigated. Zhumatiy, 
Gomez, Hutter, & Schmidhuber (2006) and also Bakker, Zhumatiy, Gruener, & Schmidhuber (2006) 
equipped a robot with a color camera and placed it into a room. The task  was to find and move to a 
randomly placed unique colored cup in the room. The camera was mounted in front of the robot and 
looked a bit downwards. It had a very limited field of view in relation to the room. Therefore, the 
robot had to find the cup before it could move to the target position. 

The controller of the robot translates sensor input data to robot movement commands. It is trained 
by different reinforcement learning methods. In Zhumatiy et al. (2006) the mean position of all camera 
pixels in a specific color range of the target object was used as input for the reinforcement learner. To 
reduce the huge amount of memory for the policy a “Piecewise Continuous Nearest-Sequence 
Memory (PC-NSM)” algorithm was used for general metrics over state-action trajectories. In Bakker 
et al. (2006) the visual information from the camera was preprocessed into a 5x4 binary grid, which 
represents the position of the cup in the camera image, if the cup is visible. To reduce the generally 
long training time for reinforcement learning algorithms for real robots, a probabilistic world-model 
was learned from less real robot experiments. This world-model was then used to make mental 
experiments on this model to train the controller with Prioritized Sweeping, which is an enhancement 
of the standard Q-Learning algorithm. The policy was applied with a high repetition rate during the 
learning process of the mental model and with a real time repetition rate in the physical world. 
 

 
Camera image obtained by the robot: The target object, the yellow cup, is in sight. Detected target color 
pixels are indicated in blue. The small yellow cross marks the center of the cluster of target color pixels. 

This information is quantized using a regular 5 by 4 grid (white lines). Bold red lines indicate the grid cell 
corresponding to the quantized state information. 
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2.5 A Testbed for Neural-Network Models Capable of Integrating Information over Time 
(ISTC-CNR) 

Stefano Zappacosta et al. (in press) propose a testbed for recurrent neural networks and related 
systems to integrate information over time. More in particular, the testbeds allow evaluating the 
capability of such models, and possibly other architectures and algorithms, of (a) categorizing 
different time series, (b) anticipating future signal levels on the basis of past ones, and (c) functioning 
robustly with respect to noise and other systematic random variations of the temporal and spatial 
properties of the input time series. The task is to scan an object or a wall while moving around it or 
along it, respectively. The recurrent network is trained to classify the object scanned, investigating 
prediction robustness, noise-robustness, and different aspects of generalization capabilities of the 
network in question. The paper also presents a number of analysis tools that can be used to understand 
the functioning and organization of the dynamical internal representations that recurrent neural 
networks develop to acquire the aforementioned capabilities. For example, to understand how they 
capture time regularities such as periodicity, repetitions, spikes, numbers, levels, and rates of change 
of input signals. Elman networks, leaky integrator networks, long-short term networks, and echo state 
networks are exemplarily introduced as suitable network candidates. The utility of the proposed 
testbeds is illustrated by testing and studying the capacity of Elman neural networks to predict and 
categorize different signals in two testbed instances: a wall task, in which two different wall patterns 
need to be distinguished, and an object task, in which three different objects are perceived. The 
testbed, possibly with additional action-information of movement type and speed in the future, seems 
to be a valuable tool to test and compare the capabilities of different time-series classification 
algorithms on somewhat real-world robotic classification tasks. 

2.6 Artificial Immune Systems for Anticipation (AISA) (OFAI) 

In the current status of the AISA implementation for the hunter and prey scenario there are two robots 
involved: On the one hand there is the Sony AIBO ERS-7 robot, which plays the role of the hunter and 
is controlled by an Artificial Immune Network architecture. On the other hand the MyBot robot, which 
is substituted by KURT3D in the real world scenario, which represents the prey, is controlled by a 
simple subsumption architecture (Brooks, 1991) that makes it move in a “foreseeable” and ordinary 
motion (e.g. a circular trajectory or wall following). 

In the scenario the AIBO robot has to catch its prey MyBot, which provides the reward upon 
success. In accomplishing this task the hunter has to anticipate the prey’s movement trajectory and try 
to get into its way in order to catch it. The complex behaviors learned and developed in this task 
perfectly show the anticipatory capabilities of the AISA framework and their suitability to robot 
control. The complexity of the scenario can be varied in two ways: 

1. By changing the environment. E.g. by creating hiding places for the pray, where the hunter 
cannot see it; by introducing rooms; or, more generally, by making the topology more 
complex so that clear view for the hunter is omitted. 

2. By increasing the degree of complexity of the movement strategies of the prey. If the prey 
follows a predictable and constant trajectory it is of course much easier to catch, as if it’s 
tumbling or alike.  

In the beginning, the robotic agent observes the prey and consequently tries to intercept it. It does this 
by anticipating the movements of the prey and since it cannot move much faster than the prey, by 
finding a shorter way to an anticipated location where it can bar its way. 

In the future the scenario will be extended, wherefore the robotic agent might then observe and 
pursuit the prey and learn typical “hiding places”, so that later on when hunting and trying to catch a 
prey it may move to anticipated “hiding places” and find prey much easier than by trial and error 
search. 

2.6.1 Programming and Simulation Environment 

To ensure a feasible amount of platform independency we use Java as the programming language of 
our architectural framework and Eclipse as software development kit as a wrap around it. All parts of 
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the robot control architecture are layered and AISA only accesses abstract sensors and actuators. This 
enables us to easily exchange any robotic platform into another by just changing codes for robot 
control and sensor access only at the lowest layer and leaving the AISA architecture unaffected and 
operational at all times. 

As the AISA architecture should work well both with real robots and in simulation, we needed a 
programming and simulation environment providing us with an open robot interface. 

 

 
 

The Webots 5 programming environment. 
 
We found Cyberbotic’s Webots 5 Simulator (Michel, 2004) to be suitable for our needs: on the one 
hand it includes a very good implementation of the AIBO ERS-7 robot that we use as our main robotic 
platform for all our experimentation and on the other hand Webots supports the Universal Real-Time 
Behaviour Interface (Baillie, 2005), which enables us to comfortably access any real robot we need to 
include in our test bed (e.g. MyBot). Additionally Webots allows us to model the simulated 
environment in a slightly simplified version of the Virtual Reality Modelling Language (VRML, 
Carey et al., 1997), which enables us to create environments of nearly unlimited complexity in a very 
convenient and rapid prototyping way. 

2.6.2 Robot Platforms 

We perform our experiments in simulation (for rapid prototyping) as well as on real robots and use 
three different robotic platforms in the different environments. Regarding the hunter prey scenario it is 
also planned to switch the roles of hunter and prey between these robots in order to evaluate the 
platform independency of the AISA architecture, the Sony AIBO ERS-7. Currently OFAI is primarily 
using the Sony AIBO robotic dog platform (Artificial Intelligence Robot) and we mainly use AIBO in 
our research and as the hunting agent in all experiments regarding our current state of development.  
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Sony AIBO ERS-7 robotic platform. 

 
Although AIBO was created initially as a robot for home entertainment, it is being used by a lot of 
researchers interested in low-cost programmable robot platforms. Unfortunately the production of 
AIBO robots was discontinued in spring 2006. Still service and support was prolonged for the next 
five years and most people continue using AIBO as they did before. 

In the simulated environment, we use the MyBot robot as the prey. MyBot is a very simple two 
wheeled robot with two distance sensors. It is included as an example virtual robot in the Webots 5 
programming environment. It is programmed for obstacle avoidance and, as long as it is not disturbed 
by sensory perceptions, it mainly follows a circular movement trajectory. 
 

 
 

The MyBot virtual robotic platform. 
 

The robot used as prey in our real world experiments is a 6-wheeled KURT3D robot (Surmann, 
H., & Pervoelz, K., 2003) originally designed for sewage pipe inspection. Its dimensions are 45 cm in 
length, 33 cm in width, and 51 cm in height (including laser range finder) and it has an approximate 
net weight of 10.4 kg. The robot carries a laptop for control and a 3D laser range finder that increases 
the weight to totally 22.6 kg. KURT3D is additionally equipped with two Logitech VGA-Cameras and 
may operate for about 4 hours with one battery charge. An embedded 16-Bit CMOS microcontroller is 
used to control the motor and lower sensors. The maximum controlled velocity the robot may reach 
using its two motors is 14.4 km/h. 
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In our experiments from the great number of sensors it is equipped with we only use its 12 
infrared and 2 ultrasonic sensors. KURT3D is also programmed to go around in circles and avoid 
obstacles, if it encounters them. Of course the potentially high velocity the robot may reach makes it 
an interesting prey for our AIBO robot. 
 

 
 

KURT 3D and AIBO in the test bed 
 

2.6.3 Test bed 

All experimentation is done in simulation using version 5 of Cyberbotics WeBots mobile robot 
simulation and in a real world environment. 

As test bed for both environments in our scenario we use a wide plain area of wooden floor 
which is surrounded by wooden boards with a height of 15 cm, and which are arranged in different 
manners (e.g. rectangular, circular). Typical test beds are depicted in following figures for the 
simulated environment and the real world environment. 
 

 
AIBO and MyBot in the simulated environment. 
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AIBO and KURT3D in the real word environment. 
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2.6.4 Sensor Input, Sensor Pool & Abstract Filters 

From the large number of sensors the AIBO is equipped with we only use a smaller subset, namely the 
two distance sensors (nose and chest), from which the chest sensor is only a binary sensor for edge 
detection, and the camera image has a resolution of 208x160 pixels. Since the raw camera image in 
terms of complexity would be far too much information to the artificial immune network and 
respectively for the encoding into an Epitope, we define several virtual sensors (i.e. filters) 
representing the current visual perception. 

To make the sensor input suitable for processing with AISA, i.e. to be able to construct a genetic 
string, which encodes an Epitope, Paratope or Idiotope, it is feasible to have integer values derived 
from all sensory inputs including the streaming image data. 

In addition to the two values of the distance (infrared) sensors, which are converted to a binary 
value range from 0, meaning low, to 1, meaning high, we use a set of abstract filters that encode the 
current visual input into the requested discrete integer values. All the image filters are generated by a 
blob detection and evaluation algorithm, which translates the image into numeric values namely the 
mass value of the detected blob, corresponding to the size of the object and the centre of gravity of the 
object, which corresponds to its position. 
 

     
 

Application of the blob filter to an AIBO camera image from the simulated environment. 
 
In our current implementation we use three different virtual image sensors. For all this filters a value 
of 0 means that there is no blob within the visual range: 

1. getHorizontalBlobPosition, which returns the horizontal position of the centre of gravity of a 
detected blob and is mainly used to detect motion in the horizontal perception axis. Further its 
history values may be used to derive some kind of speed of the perceived blob. 

2. getVerticalBlobPosition, which returns the vertical position of the centre of gravity of 
a detected blob and is mainly used to detect the motion in the vertical perception axis. 
It may additionally be used to derive the distance of the blob, and of course its speed 
as well. 

3. getBlobSector, which returns the position of the centre of gravity of a detected blob in 
terms of an image sector value. I.e. the image is split up into nine sectors (numbered 
from left to right and from top to bottom), and the centre of gravity of the detected 
blob is projected into those sectors. This filter in a way accumulates the first two 
sensors, while being less accurate than these. 

Table 1 summarizes the sensors and filters we use in our current anticipatory control architecture. As 
described in more detailed in the next section, all genetic strings are composed out of sensor and filter 
values. 
 
Type Name Description Value Range 
Distance 
Sensor 

Infrared1 Nose Distance Sensor 0 … 1 (Low, 
High) 
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Distance 
Sensor 

Infrared2 Chest Edge Detection Sensor 0 … 1 (Low, 
High) 

Image Filter getHorizontalBlobPositi
on 

Returns the horizontal position 
of the centre of gravity of a 
detected blob 

0 … 5 

Image Filter getVerticalBlobPosition Returns the vertical position of 
the centre of gravity of a 
detected blob 

0 … 5 

Image Filter getBlobSector Returns the position of the 
centre of gravity of a detected 
blob as an image sector 

0 … 9 

Summary of Sony AIBO ERS-7 sensors and their according filters used in AISA. 
 
Although we find the remaining sensors (paw sensors, stereo microphone, acceleration sensors) not 
being necessary for solving the tasks in the current hunter prey scenario, which is somewhat vision 
dependent, it seems to be evident that in more extended and complicated scenarios the usage of stereo 
audio could be valuable and necessary to effectively find a hiding prey. It is therefore planned to 
include the audio sensors (using suitable audio filters) in future, refined scenarios. 
 

      
 

Application of the getHorizontalBlobPosition  (left) and the getBlobSector  (right) 
visual filters to a AIBO camera image from the simulated environment. 
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2.6.5 An Artificial Immune System for Anticipation 

Using the robotic platforms, test beds, and scenarios described before we developed an anticipatory 
control architecture, which is largely based on the artificial immune system metaphor, originally 
suggested by Farmer (Farmer, 1986). Farmer proposed a possible relationship between biological 
immunity and computing by comparing natural immune systems with the principles or adaptation and 
machine learning. Since then a vibrant and steadily growing community, which translated the 
metaphor to a large number of application domains, has grown in this research area (Hart & Timmis 
2005). 

The artificial immune system approach we use in our anticipatory control architecture was 
particularly inspired by Jerne's immune network theory (Jerne, 1974), which proposes that the memory 
and learning capability of the immune system is not only founded by the interaction of B-lymphocytes 
(a type of antibody) with antigens, but also by B-lymphocytes interacting with each others, even in the 
absence of foreign antigens.  While this view is subject to debates among immunologists, it proved to 
be successful for several applications domains including ours. 

The antibody represents the immune system‘s reaction to specific antigens (sensor input). The 
antibody’s antigen-identifier – the Paratope – fires and executes a specific action, if its affinity to the 
antigen (and therefore Epitope) is above a certain threshold (in biological immune systems it would 
bind to and mark the antigen). If more than one antibody would be able to deal with the current 
antigen, from the ones which share the best affinity a winner is randomly chosen. 

In our case we defined a specific set of simple and atomic actions, which are to some extent 
independent of the robot platform. Over time the immune system learns how to react to specific sensor 
input. The atomic platform independent actions we use are: 

1. moveForward: the robot move forward for a specific time interval 
2. moveBackward: the robot moves backward for a specific time interval 
3. turnLeft: the robot turns left for a specific time interval 
4. turnRight: the robot turns right for a specific time interval 

Additionally we defined some atomic actions that require the robot to have an actuator: 
1. Kick: the robot kicks an object in front of it using its actuator 
2. Poke: the robot pokes an object in front of it using its actuator 

All these actions are defined on the platform abstraction layer of URBI (see also section 4.1 
Programming and Simulation Environment) and only executed by the control architecture. This 
enables us to use the same architecture on different robots by only having agent dependent libraries 
that link the actions to the corresponding low level commands of the hardware architecture. The 
atomic action moveForward, if for example executed on the AIBO would involve the control of all the 
hinges of the four legs in an adequate manner, while on a wheeled robot it would be just necessary to 
activate the motor controller of the two axes. Still on the control level only the action command to let 
the robotic agent move forward has to be executed. 

2.6.6 How Anticipation Comes Into Play  

According to Jerne’s immune network theory (Jerne, 1974) we are missing one ingredient that enables 
our antibodies to interact with each other. This part of the antibody is called the Idiotope and brings 
also expectation and anticipation into play. 
Consequently each antibody has an expectation (the Idiotope) about the results of the 
action it performed and therefore determining those antibodies which will be able to fire next. This 
linkage to one or more successor antibodies is realised via the Paratope-Idiotope affinity of all 
antibodies to all others. Antibodies that are linked may stimulate each other and suppress other 
antibodies. E.g. an antibody that never gets activated and therefore does not feasibly correspond to 
sensor input, will receive permanent suppression and after some time be dropped out of the network. 
On the other hand antibodies that often get activated will receive promotion and distribute this 
promotion also to its successors. As a result the links between these antibodies get stronger and paths 
corresponding to higher level actions emerge. 
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As the robot acts in a dynamic environment with the higher goal to catch a prey, the underlying 
artificial immune system control architecture and the network of antibodies is cycling through a 
continuous process of interaction and reinforcement that enables the network to evolve, develop, and 
adapt over time. The successive learning iterations that are performed until some stopping criteria are 
met will be shortly described in the following: 

1. Obtain and process the current data conditions (antigen) 
2. Antibody that fits best is chosen (Stimulation) using a winner takes all regime 
3. The winning antibody’s action is performed 
4. Evaluate the antibody and its performed action (Reinforcement) 
5. Compute and update all network links 
6. Clone winning antibody (Hypermutation) 
7. Remove dead links and dead antibodies 

A learning iteration starts with the processing of sensory input. First, the current antigen, that is, the 
input string, is generated from the sensor values and filters. Next the antigen-antibody interaction 
commences by the determination of affinity for each antibody and the selection of the antibody with 
highest affinity by a winner takes all regimes. If there are antibodies having equivalent affinities one 
of them is randomly chosen. After the antibody was successfully chosen its action is performed. 

The determination of the closest antibody then triggers an antibody-antibody interaction, which 
essentially co-activates structurally similar antibodies as described above. Accordingly new antibody 
concentrations are calculated for the whole network. These are rising for antibodies that have a high 
affinity to the winning one and decreasing if they have low or negative affinity to it. Next, the 
antibody chosen in the last time step is evaluated. Hereby, reinforcement learning techniques are 
applied respecting current internal drives. Essentially, the concentration is adapted again by a 
cumulative value with respect to conformance of motivations such as greed, hunger, or explore, and 
also the quality of predictions. 

 After antibody evaluation, the evolutionary component is triggered. Here antibodies are selected 
for reproduction respecting their current affinity measure. The selected antibodies are cloned and 
hyper-mutation is applied. Similarly Apoptosis removing old and useless (concentration below a 
certain threshold in relation to total sum of antibodies) antibodies from the network is applied. 
Additionally memory cells are contained. Antibodies become memory cells once their concentration 
exceeds a certain concentration threshold. Such high concentrations essentially indicate that the 
antibody is highly useful and consequently should be protected from deletion. Memory cells cannot be 
deleted and will stay in the population until program termination. 

This concludes the loop and the algorithm starts over again in the next time step. 

2.6.7 Experimentation, Preliminary Results and Future Work 

Using the previously described architecture we performed several experiments in the simulated 
environment and are constantly involved into porting and evaluating the architecture in the real world 
scenario. In the following we report about the promising results of our recent experiments and give an 
outlook to potential optimisations and future work where applicable. 

A very interesting variable of the artificial immune network is of course the antibody population 
size, which may vary over time and which can be constrained by defining a maximum number of 
antibodies that the network is allowed to consist of. If the population size is too small or too large, the 
network may never stabilise, additionally if the network is too small, learned behaviours will 
permanently get deleted from the network and have to be learned again. 

In our experiments we used varying initial population sizes starting from 10 to 100 antibodies 
and were limiting the maximum size from 100 to 1000 antibodies. A maximum number of 100 
antibodies turned out to be feasible and sufficient for the task of catching MyBot in our current 
scenario. About one third of these antibodies gets heavily used then and is turned into memory cells 
over time. In the simulation the network gets stable after about 10 minutes of learning. Thereafter, 
AIBO is able to catch MyBot in a stable and comprehensible manner. 

Since the visual data in the real world scenario does not produce as stable and predictable results 
as the simulation does, the network size for the real robot and its control architecture has to be larger 
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and the process of stabilisation lasts longer. One important part of our work in the near future will be 
further experimentation on this issue. 

Since the network’s reactions to and interactions with the environment are only canalised 
through the Epitopes, the definition of the genome is crucial for any artificial immune system and 
network to produce reasonable behaviour. We evaluated several antigen genomes of different lengths 
and also paid much attention to the construction of the visual filters and their application. In our 
current hunter prey scenario, it turns out that the getHorizontalBlobPosition filter including its history 
is most important and the strategy the robot develops heavily depends on its values. 

AIBO seems to learn a strategy like: 
a. “If I can see the prey, then I turn into the direction it is moving until I cannot see it 

anymore.” 
b. “If I cannot see it anymore, I move forward.” 

This strategy leads AIBO to anticipate MyBot getting into view again and being closer at this time, 
and consequently getting in front of the prey and catching it. 

Real world experimentation shows that visual noise that makes its way through the filters leads 
to a reduced reliability of the single filter values. The resulting antibodies need to depend on more than 
one filter value at a time. In this course, the getBlobSector gets more importance and seems to be used 
in addition to “verify” the presumption about the situation the agent is currently exposed to (Epitope). 

2.7 Goal-Initiated Behavior System Comparison (ISTC-CNR & UW) 

ISTC-CNR and UW recently published a joint investigation on the differences between the Ideomotor 
principle from the field of psychology and the test-operate-test-exit (TOTE) system from cybernetics. 
The following text provides background and overview of this work (Pezzulo, G.; Baldassarre, G.; 
Butz, M.V.; Castelfranchi, C. & Hoffmann, in press). 

Intelligence of complex organisms, such as humans and other apes, resides in the capacity to 
solve problems by working on internal representations of them, that is, by acting upon ``images'' or 
``mental models'' of the world on the basis of simulated actions (``reasoning''). These capabilities 
require that internal representations of world states, goals and actions are intimately related. With this 
respect, accumulating evidence in psychology and neuroscience is indicating that anticipatory 
representations related to actions' outcomes and goals play a crucial role in visual and motor control 
(Hesslow, 2002). As suggested by the discovery of mirror neurons (Rizzolatti et al., 1996), 
representations are often action-related and are thus grounded on the representations sub-serving the 
motor system. Barsalou (1999) and Grush (2004) try to provide unitary accounts of these phenomena 
respectively proposing perceptual symbol systems and emulation theories of cognition. In a similar 
vein, Hesslow (2002) proposes a simulation hypothesis according to which cognitive agents are able to 
engage in simulated interactions with the environment in order to prepare to interact with it. According 
to Gallese (2000): ``To observe objects is therefore equivalent to automatically evoking the most 
suitable motor program required to interact with them. Looking at objects means to unconsciously 
`simulate' a potential action. In other words, the object-representation is transiently integrated with the 
action-simulation (the ongoing simulation of the potential action)''. 

Recently anticipatory functionalities have been started to be explored from a conceptual point of 
view (Butz et al., 2003, Castelfranchi, 2005, Roy, 2005) as well as from a computational point of view 
(Drescher, 1991, Butz & Hoffmann, 2002, Butz, 2002, Pezzulo & Calvi, 2006, Wolpert & Kawato, 
1998). This paper contributes to this effort by analyzing two important now ``classic'' frameworks of 
goal-oriented behavior, namely the ideomotor principle (IMP), and the test operate test exit model 
(TOTE). 

The IMP and the TOTE can be dated back in their origin for decades if not centuries. The IMP, 
which was proposed multiple times during the 19th century within the psychological literature 
(Herbart, 1825, James, 1890), hypothesizes a bidirectional action-effect linkage in which the desired 
(perceptual) effect triggers the execution of the action that previously caused it. The TOTE, introduced 
within the field of cybernetics (Miller, Galanter, & Pribram, 1960), proposes that goal-oriented action 
control is based on an internal representation of the desired world's state(s) with which the current 
world's state is repeatedly compared to in order to direct actions. 
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The first goal of the paper is to provide a comprehensive introduction to both the IMP and the 
TOTE and to highlight their similarities, differences, and drawbacks in explaining anticipatory goal-
oriented behavior. The second goal of the paper is to analyze, at an abstract level, three computational 
architectures, which implement various different features of the IMP and the TOTE in distinct ways. 
The architectures are only reviewed here, while the reader is referred to specific papers for details. The 
analysis aims at exemplifying and clarifying the principles underlying the IMP and the TOTE. It is 
intended to serve as a starting point for future research on the investigation of anticipatory goal-
oriented behavioral mechanisms. A final discussion concludes the paper with an outlook of the most 
important challenges that the two principles pose to cognitive science. 

2.8 Goal-initiated behavior: Experimental results for the Robotic Eye-Arm System (ISTC-CNR) 

This section is about the performance of the Robotic Eye-Arm architecture tested on a reinforcement 
learning task with various flavours of the system (with or without the real arm, with or without some 
pre-learning) and with different input configurations. The value of the use of various bio-inspired 
architectural choices, like developmental learning and population encoding, is verified from the 
results. Other interesting findings are about the influence on the performances of nonlinear coding of 
the visual input and the influence on the performances of the real robotic arm versus the simulated 
arm. 

The remaining sub-sections illustrate: 
• The task that will be used to test the Robotic Eye-Arm System 
• The model architecture 
• Description of the eye-arm robotic system and of the environment 
• The descriptions and the results of the following experiments: 

o Experiment 1: Test Of Speed of Learning Phase 4 (Reinforcement Learning) 
o Experiment 2: Accuracy of Reaching After Learning Phase 4(Reinforcement Learning) 
o Experiment 3: Performance without learning phase 3 (pre-training) 
o Experiment 4: Learning single patterns (Reinforcement Learning) 
o Experiment 5: Performance with the real arm (Reinforcement Learning) 

2.8.1 The task 

The robotic architecture presented here will be tested using a simplified version of the “discrimination 
and reaching task” used by Cisek & Kalaska (2005) to carry out physiological recordings in monkeys’ 
premotor cortex. The task is composed of five phases: 
1) center-hold time: the monkey’s hand is positioned on a manipulandum at a central starting position 
of an horizontal plane, and a green cue circle appears at the center of a screen set in front of the 
subject; 
2) spatial cue: a red and a blue circle (with a 5 cm radius) appear on the screen at two opposite 
positions of eight possible target locations distributed around a circle; 
3) memory: a green cue circle appears again at the center of the screen; 
4) color cue: a color cue, either red or blue, appears at the center of the screen: this non-spatial cue 
signals which of the two memorized color-coded spatial cue locations is the target that the monkey 
should reach; 
5) go signal: eight green circles appear at all the possible target locations: if the monkey reaches the 
target position that matches both one of the two spatial cues and the color cue, it receives a reward. 
 
In the simplified version used for the test of the robotic arm-eye system there is only one image shown 
to the system per trial. It is composed of the spatial cue and the color cue. 
The task has a number of advantages with respect to testing the Robotic Eye-Arm System proposed 
here: 
• The experiment has already been tackled with success by ISTC-CNR with a bio-inspired neural 

architecture (Ognibene et al., 2006). 
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• The task has been taken from a neuroscience paper (Cisek & Kalaska, 2005) that describes 
interesting data, physiological and behavioral, related to monkeys engaged with the task: these 
data can be compared with the results obtained with the computational architecture proposed here. 

• The simplified task is not as computationally complex as the original one (Cisek & Kalaska, 2005, 
Ognibene et al., 2006) so the set of “x-or” sub-problems and the integration of information in time 
that required a lot of training trials are removed, so to be usable on a real robot. 

• The task allows simplifying the hard (and out of scope) problem of object’s recognition as targets 
and cues have distinct colors. 

The five phase of the task represented by the screen images that the system perceives. The arrow in the 
last fifth image indicates the movement the system has to perform in order to get the final reward (see text 

for details). 
 

                  
 

Simplified version of Cisek & Kalaska task: synchronous image (no memory needed); only 4 patterns out 
of 8 (No x-or problem, perceptron is enough). 

2.8.2 The model architecture 

The models of ISTC-CNR focus on control and tackle the following anticipatory functionalities: 
• Internal representations of goals as anticipated states that govern the behaviour of the system (the 

activation of these representations lead the system to act in the world in order to increase the 
probability that they will be accomplished: cf. Pezzulo et al., 2006). 

• Selection of future goals on the basis of a winner-take-all dynamic competition between goals. 
The integration of information in time is anticipatory with respect to future overt behaviour. 

• Reinforcement learning capability based on the anticipation of future discounted rewards. 
The architecture of the model is shown below. The figure indicates the components of the architecture 
and the corresponding brain parts (see Kandel et al., 2000). The functioning and learning processes of 
the components of the architecture are now explained in further detail. 
The retina’s units are activated by the images on a screen thorough a webcam. The retina is composed 
of 40x30 units for the red, blue and green components. The image from the weights is filtered 
thorough a smooth rescale filter and Sobel filter to detect edges. 

 

 

Time 
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The actor-critic components controlling the arm are a neural implementation of the actor-critic model 
(Sutton and Barto, 1998). The actor (basal ganglia’s matrix) is a two-layer feed-forward neural 
network with 20×20 input units, that correspond to the units of the retina, and 20×20 output  
units. The output units have a Sigmoid transfer function with activation yj and each has a  
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The neural components of the architecture with the corresponding brain areas on the right side. 

 
topological one-to-one connection (with weights equal to υ = +1) with the posture controller’s input 
units. The critic (basal ganglia’s striosomes and substantia nigra pars-compacta) is mainly composed 
of a neural network (“evaluator”) having a linear output unit. At each step t this output unit produces 
evaluations Vt of perceived states, and the critic uses couples of successive evaluations, together with 
the reward signal Rt, to compute the surprise signal St  (dopamine): 
 

( ) 1 −−+= tttt VVR S γ  
 
where γ is a discount factor (γ = 0.3). The surprise signal is used for training both the actor and the 
evaluator (see below). 

The accumulator units (premotor cortex) form a 2D 20×20 map, have all-to-all lateral inhibitions, and 
have local excitations that decrease with distance on the map. The units engage in a many-winner 
competition on the basis of the signals (“votes”) that they receive from the actor’s output units via the 
one-to-one connections (Usher and McClelland, 2001; Schall, 2001). In particular, they behave as 
leaky-integrators and have an activation aj as follows: 
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where τ is a time constant, corresponding to 1/10s, dt is the integration time step (dt = 0.05 1/10s, so 
dt/τ = 0.05; aj is numerically updated every 0.005 s), χ regulates the speed of the dynamics (χ = 1), δ 
is a decay coefficient (δ = 0.1), ι regulates the all-to-all lateral inhibition (ι = 0.15), η regulates the 
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local lateral excitation (η = 1), ek represents the fixed weights of the lateral excitatory connections (ek 
is set to 0.4 for neighboring units along the x/y-axes directions, to 0.2 for neighboring units along the 
diagonals, and to zero for all other units), εjt is a noise component that ranges over [-0.1, +0.1] and 
varies in each cycle, εjc is a noise component that ranges over [-0.25, +0.25] and is constant for time 
intervals c randomly drawn from [0, 5] s (εjc is important for exploration of reinforcement learning as 
various εjt tends to sum to zero over many steps). When the activation aj of one accumulator unit 
reaches a threshold T (T = 1.9), the total activation of accumulator units is normalized to 1, their 
dynamics is “frozen”, and the execution of a reaching sensorimotor primitive is triggered. 
The posture controller has an input-unit layer corresponding to the accumulator units and two Sigmoid 
output units, with activation d’k, that range over [0, 1] (motor cortex/spinal cord neurons). The 
activations of these output units are remapped onto the arms’ angles and form the commands issued to 
the posture servomechanism in terms of arms’ desired angles (posture). It is important to notice that 
these desired angles are generated by the cluster of accumulator units that are active at the end of the 
many-winner competition. This implies that the target of the executed sensorimotor primitive is a 
mixture of the targets “suggested” by all active units: this population encoding (Pouget et al., 2003) 
allows the arm to cover the whole continuous space of postures. 
The posture servomechanism is a hardwired closed-loop controller (Golgi tendon-organs, muscle-fiber 
afferents, and spinal cord, cf. Shadmehr and Wise, 2005) that issues commands to the arm’s actuators 
(muscles) on the basis of the desired-posture command received from the posture controller. 
 
Learning phases related to the arm. The learning processes take place in two phases, the childhood 
phase (three processes) and the adulthood phase (one process). Now we first present an overview of 
these learning processes and then describe them in detail.  
During the childhood phase the system performs motor babbling: in practice the arm randomly varies 
its joints’ angles, with changes ∆d’k belonging to [-10, +10] degrees, without violating the joints’ 
constraints. Motor babbling is used for performing three learning processes. The first two processes 
allow the system to learn to perform sensorimotor primitives, in particular: (a) to train the 2D map of 
accumulator units, through a Kohonen algorithm (Kohonen, 2001), to represent the postures perceived 
by the proprioceptive units dk (during the childhood phase the proprioceptive units, the accumulator 
units, and their connections, function as a Kohonen network); (b) to train the posture controller, 
through a Widrow-Hoff algorithm (Widrow and Hoff, 1960) (the generalized “delta rule”), to return as 
output the arm’s angles corresponding to postures encoded in the Kohonen map. These two training 
processes lead the whole network formed by the Kohonen network and the posture controller to 
implement an “auto associative” function (i.e., the arm’s angles encoded in the proprioceptive units 
are returned by the postural controller’s output units). This whole network allows the system to recode 
postures, at the level of accumulator units, in an expanded format suitable to perform actor-critic 
reinforcement learning (Sutton and Barto, 1998). Notice that suitable population encodings at the level 
of the accumulator units allow the system to select any posture in the continuous space of postures: 
this is precisely what the actor-critic components learn to do while solving reinforcement-learning 
reaching tasks in the adulthood phase. 
With the third learning process of the childhood phase the system’s actor learns, through a Widrow-
Hoff algorithm, to associate the point in space where the retina sees the arm’s “hand” (i.e., the forearm 
segment’s tip) with the activation pattern of the Kohonen map’s units corresponding to such point 
(pattern caused by the arm’s perceived angles). With this training, the actor acquires a bias to select 
sensorimotor primitives that drive the arm’s hand to points in space corresponding to the retina’s 
active units. This bias makes reinforcement learning performed during the adulthood phase quite fast 
notwithstanding the fact that the continuous space of postures is quite large. Note that two simplifying 
assumptions allow obtaining this result: (a) the retina does not perceive the arm and hand in the 
adulthood phase; (b) retina’s units activated by the hand in the childhood phase are activated by the 
screen patterns in the adulthood phase. 
During the adulthood phase the system learns by trial-and-error to accomplish Hikosaka’s task. The 
actor-critic model used to this purpose has been suitably modified to be capable of selecting “actions” 
represented with population encodings. The four learning processes are now illustrated in detail. 
 
Childhood phase: training of the Kohonen network. During the childhood phase, while the system 
performs motor babbling, the accumulator units receive input signals from two input units, having 
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activation dk, that encode the arm’s current angles (remapped in [-1, +1]: this information is thought to 
be returned by proprioceptive sensors located in the muscles, e.g. Golgi tendon-organs and muscle-
fiber afferents, Shadmehr and Wise, 2005). An extra pseudo input unit is used to perform a “z-
normalisation” of the input pattern: this is a normalization that preserves size information (Kohnen, 
2001). The accumulator units are trained with a Kohonen algorithm (Kohnen, 2001) that allows them 
to develop representations of the arm’s angles in their weights. The output units give place to a 
winner-take-all competition: the unit with the highest activation potential activates with 1 (“winning 
unit”), while the other units activate at levels decreasing with their distance from the winning unit on 
the basis of a Gaussian function. In particular, the activation a’j of the unit j and the rule to update its 
weights wjk are as follows: 
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where hfj is the distance on the map between the unit j and the winning unit f (hfj = 1 for two 
contiguous units), σ is the standard deviation of the Gaussian function (σ = 1), φ is a learning 
coefficient (φ = 0.01). Note that the Kohonen algorithm uses a winner-take-all competition to activate 
the accumulator units instead of the dynamic competition reported in equation 3, used in the adulthood 
phase: indeed, the former tends to lead to an activation of the accumulator units that approximates the 
steady state activation that the same units would get through the latter (Kohnen, 2001). 
 
Childhood phase: training of the posture controller. The posture controller is trained on the basis of a 
direct inverse modeling procedure (Kuperstein, 1988) that exploits the random movements ∆d’k 
produced by motor babbling as follows: (a) the arm’s angles are perceived and categorized by the 
Kohonen net; (b) a Widrow-Hoff algorithm (Widrow and Hoff, 1960, learning rate = 0.3) is used for 
training the posture controller’s weights wkj to associate the Kohonen-map units’ activation (input 
pattern) with the angles d’k caused by the random movements considered as desired output. 
 
Childhood phase: pre-training of the actor. Through this pre-training, based on a Widrow-Hoff 
algorithm, the actor’s weights wji are trained to associate the position of the hand perceived with the 
retina (input pattern x) with the corresponding posture (desired output a’) encoded in the Kohonen 
map (learning rate 0.1). 
 
Adulthood phase: actor-critic’s reinforcement learning. During the adulthood phase, the actor-critic 
component is trained to solve the task by reinforcement learning. During training, Rt is set to 1 when 
the arm reaches the two targets of any set of the hyperset in the correct order, and to 0 otherwise. The 
evaluator is trained after the selection and execution of a whole sensorimotor primitive (the primitive 
terminates when the arm reaches the desired posture selected by the posture controller). In particular 
its weights wi are trained, on the basis of a Widrow-Hoff algorithm (learning rate ψ = 0.6) and a TD-
rule (Sutton and Barto, 1998), as follows: 
 

( )( ) 11111  −−−−− −++=+= ittttitittitit xVVRwxSw w γψψ  
 
Through this learning process, the evaluator’s evaluations Vt of the perceived states xt tend to become 
higher for states corresponding to postures “closer” to reinforced states, and to form a gradient over 
the space of postures. The actor uses this gradient to learn to select highly rewarding sequences of 
primitives (Sutton and Barto, 1998). In particular the actor updates its weights wji with a Widrow-Hoff 
algorithm (learning rate ζ = 0.6): 
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where (yjt-1(1-yjt-1)) is the derivative of the Sigmoid function. The functioning of this learning rule is 
illustrated below. The rule tends to update only the weights of the units of the “winning cluster” 
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because the activation aj of other units tends to be zero at the end of the race. The votes of the winning 
units are decreased or increased in correspondence of respectively positive and negative surprises. 
 
 
 
 
 
 
Effects of the actor’s learning rule of equation 6 illustrated with a scheme relative to a 1D layer of actor’s 

output units (horizontal axis). Left: with a surprise St > 0, the actor’s votes yt-1 (upper graph), that 
caused certain accumulator units’ final activations at-1 (lower graph), are moved toward the target yt-

1+St at-1 (upper graph): this causes the votes of the winning cluster of accumulator units to increase (bold 
arrow) while other votes are not changed. Right: with a surprise St < 0, actor’s votes yt-1 are moved 

toward the target yt-1+St at-1: this causes the votes of the winning cluster of accumulator units to 
decrease, while other votes are not changed 

Description of the eye-arm robotic system and of the environment 
The environment: The environment is constituted by the screen of a 19” CRT monitor showing 
images of patterns composed by 3 circles which can be red or green and have a diameter of 5 cm, 
while the background is black. The monitor is positioned horizontally, toward the ceiling, and will be 
used as working plane for the arm. The arm must reach one of the circles shown on the screen.  
 
The system’s real-camera “eye”: The eye of the system is a standard digital web-cam (320×240 
pixels, RGB) mounted over (and looking at) the work plane of the arm. The neural controller is 
connected to the webcam through Sun standard libraries: “JMF - Java Media Framework”. 
 
The simulated system’s arm: The architecture is being tested both with a simulated and with a real 
robotic arm. The simulated arm has the same structure and dimensions of the real one, and it is used to 
run the 1-3 learning phases, so the networks trained on the simulated arm can then be used for the 
fourth learning phase, the reinforcement learning, both on the real and simulated arm. The arm is 
composed of three segments: upper arm (15.9 cm), lower arm (17.5 cm) and hand-like segment (9.5 
cm). The arm is trained to keep the hand-like segment parallel and near to the screen, reducing the 
number of free dimensions to two instead of four, and avoiding so the redundancy problem.  
 
The robotic system’s arm: The figure below shows the robotic system. With respect to the use of this 
arm it is important to notice that after further investigations, ISTC-CNR decided to abandon the idea 
of using commercial robotic-arms for its tests (such as the ActiveMedia arm previously considered) 
for the following reasons: 
• Professional reliable robotic arms (in particular arms that do not break easily) cost too much for 

the project’s budget (about 70 000 euros). On the other side, robotic arms that could be purchased 
within the project’s budget (about 5 000 euros) were too fragile. 

• Out-of-the-shelf robotic arm are a “black box” for research: it is not possible to easily modify the 
hardware as desired; moreover, repairing the hardware implies sending it back to the producer, 
resulting in months of lost research activity. 

• Low-precision hardware was OK for the research project as it represents an interesting challenge 
for neural-network controllers, supposed to be robust and adaptive. 

 
For these reasons ISTC-CNR decided to build a customized arm in its labs, that will be used to test the 
integrated architecture proposed here. The robotic set-up has the following features: 
• The system is composed of a robotic arm and a web-cam. The robotic arm has 3 segments with 4 

degrees of freedom (shoulder: 2; elbow: 1; wrist: 1) .The physical supports parts of the set-up 
belong to the Erector Set series, manufactured by Lynxmotion (http://www.lynxmotion.com/). The 
support parts for the “shoulder” of the arm were built at LARAL by customising metal blades. 

• The digital servo-motors are manufactured by Hitec. They can be controlled in terms of desired 
angles. They weight 60 g each, have a torque of 12.1 kg cm, use 6 V dc., and contain a micro-
controller for the regulation of velocity, power, maintenance of desired position, etc. A suitable 
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yt-1 
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“programmer”, HFP-10, can be used to set the parameters of the servo-motor (e.g., positions’ 
range, rotation direction, failsafe, maximum speed, etc.). 

• The electronic card used to control the servo-motors is an SSC32 (Serial Servo Controller), 
distrubuted by Lynxmotion. It is based on the micro-controller ATMEGA8-16PI, produced by 
Atmel. The card can control up to 32 servo-motors, through 3 different electricity currents. The 
card has a memory device, a 24LC32P EEPROM (Electrically Erasable and Programmable 
ROM, extendible to 1024 KB). 

• The card can be controlled from a pc, via serial port: (a) on the basis of C++ programs,  using an 
API based on a DLL furnished with the card; (b) using “Java Communications API”, for the 
control of the serial port. 

 

  
 

Left: robotic arm, assembled at ISTC-CNR, which is used to test the integrated architecture. Right: the 
base of the arm with the electronic card used to control it. A webcam, not shown in the picture, “observes” 

the working area of the arm from above and constitutes the “eye” of the system. 

2.8.3 Experiments 

In this section I'll report the experiments made over our architecture, with the use of webcam taken 
input and in the last experiment the real arm. 

Experiment 1: Test Of Speed of Learning Phase 4 (Reinforcement Learning) 

This experiment aimed to test the speed of the reinforcement learning algorithm (learning phase 4) that 
exploit the results of phase 3. We measured the distance between the reached position and the actual 
goal for the first 100 actions of 5 different simulation runs. In this test the arm was simulated whereas 
the input was acquired through the real webcam “watching” the stimuli screen. 

   
                                     (a)                                                                            (b) 
Reinforcement Learning Speed Test: Final hand position error (y axis)  in 100 actions (x axis). The error 
was measured as the Euclidean distance between the final position and the centre of the target measured 



Deliverable D14 (D4.2) – Experimental results and benchmarking of mechanism based on analogy, proactive and  
goal directed behaviour. 

30 

in the visual space. A data relative to 5 runs of 100 actions. B evolution of the error mean value of the five 
run. 

 

After 70 actions the median error keeps its value under 5 cm, the maximum error is fewer than 3 cm 
after step 70 in the different runs while the correct target is chosen. This value is smaller than the 
dimension of the target so no more precision enhancement can be expected. The error is about the 8% 
of the arm extension. 

Summarizing after about 70 actions the RL algorithm learns which action associating with each visual 
pattern. The remaining errors are caused by the 'explorative' noise and by webcam image (alignment, 
lights reflections and slow refresh) noise. 

  
                                      (a)                                                                    (b) 

Reinforcement Learning Accuracy: Final hand position error (y axis)  in 100 actions (x axis). The error 
was measured as the Euclidean distance between the final position and the centre of the target measured 

in the visual space. A data relative to the last 100 actions of 5 runs of  200 actions. B: evolution of the error 
value average over the five run. 

Experiment 2: Accuracy of Reaching After Learning Phase 4 

This experiment aimed to test the accuracy that the reinforcement learning algorithm can achieve. The 
distance between the reached position and the actual goal for 100 actions after the first 100 actions for 
5 simulation runs was measured. In this test the arm was simulated whereas the input was acquired 
through the real webcam “watching” the stimuli screen.  

The medium value of error averaged over the last 100 actions and the five runs is 2.1831 cm. As 
shown in the figure, there are 2 runs that do not have any error, and for these runs the average value of 
error is 2.01cm. Two of the other three runs have one target error selection, and the last run has 3 
errors that can be interpreted as some exploration behaviour. 

Usually there are not large variations on the error if there are not target selection errors, as one can see 
from the low standard deviation of the 2 runs without target selection error: these are 0.57 and 0.64 
(the runs with 1 error have 1.35 and 1.22 and the run with 3 error have a variance of 3.02cm). 

Experiment 3: Performance without learning phase 3 (pre-training) 

This experiment aimed at testing the performance (precision and speed) that the reinforcement 
learning algorithm could obtain without the third phase of learning. The distance between the reached 
position and the actual goal was measured for 500 actions. In this test the arm was simulated whereas 
the input was taken by the real webcam. 

We can see from the figure below: A that the system does not seem to learn the task in 500 trials. B 
shows that before step 200 the error decreases in a significant way. C shows that in about half of the 
action the distance is low like in the experiments with the learning phase 3 while the other half has 
very high error. D shows a screenshot of the simulation where one can see that only 2 patterns out of 4 
have been learnt, so explaining the previous result. E indicates that the precision acquired on the learnt 
patterns is smaller to that of experiments 1 and 2 (about 2.7 cm): this indicates that the third phase of 
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training does not produce any negative interference on the RL learning (learning phase 4). F shows 
that the learning of the first pattern is accomplished around action 100 and that the learning of the 
second pattern is accomplished around action 170, so the system is slower than when using phase 3. 

One last interesting thing is that the system does not seem to be able to learn the other two patterns 
running for more than 300 actions after the last pattern learning. Looking at D we can suppose that this 
problem can be caused by a bias induced by the learning of the first 2 patterns that make the system 
select positions between the 2 positions relative to the two previously learnt patterns. Moreover the 
non-linearity of the system takes the exploration near the edge of the reachable positions. In summary 
the chances to find the right response for the pattern decrease for every pattern learnt. 

Experiment 4: Learning single patterns (Reinforcement Learning) 

This experiment aimed to find some relationship between the spatial structure of the pattern and the 
learning speed. There are various factors that can affect learning speed with patterns that can look very 
similar, for example the non-linearity of the mapping and the reflections on the screen. The distance 
between the reached position and the actual goal was measured for 200 actions in 4 simulation the 
exposing the system to a single pattern for the whole simulation. In this simulation the arm was 
simulated while the input was taken using the real webcam.  

The first pattern (Fehler! Verweisquelle konnte nicht gefunden werden..A) is learnt in very few actions 
(3) and the initial activations relative to the three targets seem very separated, with a cluster more 
active than the others, the cluster near the bottom. The second and third pattern are learnt more slowly, 
with about 10 actions, and their  activations look less separated then that of the first pattern and 
without a more active cluster. The fourth pattern takes 25 actions to be learnt, and it produces an 
activation where cluster are very difficult to be distinguished 
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                                       (c)                                                                    (f) 

Reinforcement Learning without phase 3:(A,B,C) Final hand position error (y-axis) on actions(x-axis). 
The error is the Euclidean distance between the final position and the centre of the target measured in the 

visual space. A: evolution of the error. B: evolution of the error averaged with a moving average of 20 
steps. C: evolution of the error for the last 100 actions. D image taken from the simulation, the dots are 

reached positions, the 3 rectangles are the pattern shown to the webcam, the crosses are the target 
positions for the various patterns. E diagram plots different data when the distance (d) is smaller then 4 

and when it is greater then 4, the average distance d in these 2 situations and the ratio on of this two 
situations. F: the ratio with different thresholds distance threshold (2.5,4,8cm) 
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Performance for different patterns :(ABCD)Top figure is final position error versus action index. The 
bottom figure is a screenshot of the activation of the votes map before training. On each column we have 

the two figures for the different patterns. 

Experiment 5: Performance with the real arm (Reinforcement Learning) 

This experiment aimed to test the influence of using the real arm with reinforcement learning 
algorithms. The distance between the reached position and the actual goal for the first 200 actions for 
2 simulation runs was measured. The real arm can influence the performance with respect to 
simulation because it covers the image of patterns seen by the webcam. 

The real arm has a learning time that is up to 2 time slower with respect to simulations. The system 
learn the 4 patterns around action 140 but there are many more errors probably due to the reflection of 
the arm on the screen and to the variation of the patterns that are covered by the arm. If the system 
could know the position of the arm, it could infer the pattern that is covered in a easier way, 
(cancellation effect): this might suggest possible future solution to this problem. 

 
                              (a)                                                                           (b)  

 
                               (c)                                                                             (d) 

Performance with the real arm: (A,B,C,D) Final hand position error versus(y index) in 200 actions (x 
axis). The error is the Euclidean distance between the final position and the centre of the target measured 

in the visual space. Data relative 2 runs of 200 actions. A: the evolution of the error in the first run. B: 
evolution of the error on the second run. C: average of the 2 runs. D: evolution of the error of the 2 runs, 

averaged with a moving average of 10 steps. 

 
              (a)                           (b)                            (c)                            (d)             
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2.9 Goal-Initiated behavior execution and control (UW) 

Besides the system of ISTC-CNR that is able to select goal states effectively based on top-down 
motivations and bottom-up stimuli properties, UW developed a Sensorimotor Unsupervised 
Redundancy Resolving Architecture. (SURE_REACH). SURE_REACH is a modular hierarchical 
architecture that solves the inverse problem of generating a sequence of motor commands, which 
moves the hand to a desired hand location. It is divided into two modules that are trained with 
unsupervised Hebbian-like learning rules. SURE_REACH is currently accepted at IJCNN and also 
accepted for the Psychological Review journal (Herbort, Butz, in press, Butz, Herbort, Hoffmann, in 
press). 

During learning, a posture memory (PM) addresses the inverse kinematics problem. It 
transforms a hand location into a set of all those arm postures that realize the respective hand location. 
A motor controller (MC) generates motor commands that move the arm toward the goal posture set 
provided by PM. Thereby MC is able to generate movements toward redundant, under-constrained 
goal specifications. Even more so, the postures encoded in the goal representation can be weighted if 
not all end postures are equally useful outcomes of the movement. MC consists of several motor 
command dependent body models, which encode the movements of the arm in posture space, given a 
certain motor command is executed.  

Before a movement can be performed, MC prepares a state-to-action mapping by dynamic 
programming based on the learned body models. This mapping provides suitable motor commands to 
move a simulated arm from each possible posture toward the desired hand location and can be 
considered an online generated inverse model. The dynamic programming is also one of the key 
differences to previous models. While other models encode a single inverse model during motor 
learning, which is used for all tasks later on, SURE_REACH generates an individual inverse model for 
each task. This enables the incorporation of task-dependent constraints and optimality criteria by 
adjusting the model, which is used by dynamic programming, to the current task demands. For 
example, SURE_REACH avoids obstacles in hand space, regards novel cost functions, or controls an 
arm despite fixed joint angles, all without having been in either of these situations and without the 
necessity to relearn. 

 

Posture
Memory

Motor
Controller

Desired Hand Location
(Hand Space)

motor neurons / actuators

End Posture Constraints
(Posture Space)

Obstacles
(Hand Space)

 
 
As a model for motor learning and control, SURE_REACH revealed several properties. First, 

during human motor learning, accuracy increases and movement times and reaction times decrease. 
The model can not only account for the increasingly accurate movements, but also training effects that 
relate to movement preparation are reflected in the model. Also movement times are reduced by 
training. Second, representing goals by population codes is not only in line with neurophysiological 
data but also with psychological findings and theories (Erlhagen & Schöner, 2002; Flash & Sejnowski, 
2001). Also, the combination of the population encoded goals and the activation propagation process 
proved suitable to replicate human experimental data from a priming paradigm. Additionally, in 
contrast to many other models of motor learning and control, which can only process a single target 
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posture or hand location, SURE_REACH can account for more complex target representations, such 
as ranges of acceptable end states. Likewise, human subjects and primates are able to partially prepare 
movements to subsets of  movement directions or distances (Bock & Arnold, 1992; Bastian, Schöner, 
& Riehle, 2003). Third, a priming experiment could be replicated by means of the space representation 
and network dynamics. Fourth, it was demonstrated that representing kinematic redundancy enables 
the simulation of some features of human motor control, that cannot be accounted for by kinematic 
models based on goal directed learning schemes (such as Baraduc et al., 2001; Ognibene et al., 2006). 
In humans, the final arm posture of a movement depends on the starting posture (Cruse et al., 1993; 
Fischer et al., 1997; Jaric et al., 1992; Soechting et al., 1995). Also in SURE_REACH, movements to 
the same hand position differ, depending on the starting posture. 

Finally, due to the sensorimotor redundancy encoded in the motor controller, SURE_REACH is 
able to react quickly to novel constraints. This enables the controller to avoid obstacles and recruit 
alternative actions, if previously optimal actions are suddenly costly or even impossible. The 
successful simulation of human motor behavior due to the encoding of motor redundancy could not be 
accounted for by models that strive to resolve redundancy before learning. 

The simulations in Herbort & Butz (in press) showed additionally that SURE_REACH can 
exploit the kinematic redundancy to incorporate demands of the subsequent task in its goal 
representation. By doing so, the subsequent movement can be carried out faster because it starts from 
an advantageous posture. The suitability of a posture to serve as starting point for a particular task is 
provided by the sensorimotor grounded distance measures in the motor controller. Similar behavior in 
humans has been found in reaching tasks (Fischer, Rosenbaum, Vaughan, 1997) but also in other 
domains like bimanual object manipulation (Weigelt, Kunde, & Prinz, 2006) or speech production 
(Dell, Chang, & Griffin, 1999). Additionally, the more complex movement preparation process is in 
line with experimental findings, which show an increase in preparation time for the initiation of the 
first movement of a sequence of aiming movements (Lavrysen, et al., 2003). In conclusion, the 
availability of redundant postures provides the flexibility to align movements to the demands of future 
tasks. 

In conclusion, in contrast to many other models, SURE_REACH relies on an unsupervised 
learning scheme that connects neurons that encode different body configurations. This is very 
appealing from a computational and neuroscientific point of view. On the one side, body states or 
movement plans are likewise represented by populations of neurons in different motor areas 
(Georgopoulos, 1995). Theoretical considerations suggest that this form of representation is not only 
robust but enables advanced information processing (Knill & Pouget, 2004). On the other side, 
associative learning mechanisms were substantiated in motorcortical areas (Jackson, Mavoori, & Fetz, 
2006). Furthermore, a big problem of error based motor learning approaches is avoided because 
associative learning does not require the transformation of an externally represented error signal into 
an error signal in motor command space. 

The reported simulations clearly show that the representation of complete kinematic and 
sensorimotor body models enables the quick adaptation to novel tasks and optimality criteria. Whereas 
striving to encode redundancy may be very economic in the sense that most of what is experienced is 
also retrievable, it requires far more complex neural networks to encode the body models and to 
generate motor commands task-dependently than neural networks that encode a direct goal-to-action 
mapping. Hence, to apply this architecture to control a body with many more degrees of freedom, the 
learning mechanisms and body representations have to be refined. First, many independent low 
dimensional body models could be stored in a modular architecture, for example, separating arm, 
hand, and finger representations. Second, the now hard-wired population encoding could be improved 
by self-organizing maps that optimally cover the relevant work space. Third, local learning rules and 
sparse neural networks could replace the now fully connected neural networks. 

By including these enhancements we are confident that SURE_REACH will be able to control 
more complex and dynamic bodies. In conclusion, learning mechanisms that encode only a single 
goal-to-action mapping are too restricted to account for the high flexibility in human motor behavior. 
On the other hand, it is not yet well understood how the human brain can adapt from one second to the 
other to the requirements of constantly changing tasks in a constantly changing environment, let alone 
how this competency might be acquired. SURE_REACH makes one step forward to deepen our 
understanding of this intricate question and further experiments with SURE_REACH will shed 
additional light on the underlying computational, neural, and psychological mechanisms. 
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2.10 Combined Goal-initiation Architectures for Interactive Goal-directed Action Selection 
and Execution (ISTC-CNR and UW) 

The two previous systems were recently combined into a RL_SURE_REACH (Herbot, Ognibene, 
Butz, Baldassarre, submitted). A general outline of the combined architecture and its capabilities is 
given in the following. 

The paper presents a developmental neural network model of motor learning and control, called 
RL SURE REACH. In a childhood phase, a motor controller for goal directed reaching movements 
with a redundant arm develops unsupervised. In subsequent task-specific learning phases, the neural 
network acquires goal-modulation skills. These skills enable RL SURE REACH to master a task that 
was used in a psychological experiment by Trommershäuser, Maloney, and Landy (2003). This task 
required participants to select aim points within targets that maximize the likelihood of hitting a 
rewarded target and minimizes the likelihood of accidentally hitting an adjacent penalty area. The 
neural network acquires the necessary skills by means of a reinforcement learning based modulation of 
the mapping from visual representations to the target representation of the motor controller. This 
mechanism enables the model to closely replicate the data from the original experiment. In conclusion, 
the effectiveness of learned actions can be significantly enhanced by fine-tuning action selection based 
on the combination of information about the statistical properties of the motor system with different 
environmental payoff scenarios. 

The figure on the right shows the four main components of the architecture. (1) A model of the 
human motor apparatus and the experimental setup receives arm motor commands and provides 
proprioception of current joint angles, visual information about the hand position and target locations 
in extrinsic space, and overall reward values to the neural controller. (2) A motor controller (MC) 
generates step-by-step motor commands to move the arm toward target postures (Ptarget). MC is 
trained by unsupervised associative learning in an initial “childhood” learning phase, during which 
random motor commands are executed and 
their effect on joint postures are encoded. 
Later on, this information is used, in an 
inverse fashion, to map from (desired) arm 
postures to motor commands. (3) As the task 
requires movements to targets represented in 
an extrinsic coordinate frame, a posture 
memory (PM) converts a hand target 
(Htarget), encoded in extrinsic coordinates, 
into a representation of the redundant arm 
postures that correspond to it. The output of 
PM is used as the target representation for 
MC. Like MC, PM develops in an 
unsupervised fashion during the childhood 
learning phase. (4) Finally, an actorcritic 
reinforcement learning (RL) mechanism [9] 
modulates the retinal input (I) before it is 
used as target representation forMC. During 
task specific learning phases in the 
simulation of the experiment, RL explores 
the consequences of the selection of varying 
target representations. Thereby it 
“cristalizes” on a retinal-to-target 
representations mapping that, given the 
configuration of the reward/penalty areas as 
well as neural and motor noise, maximizes 
the overall payoff. 

In summary, the paper presented the RL SURE REACH architecture, which is used to model the 
acquisition of basic motor skills with unsupervised learning during a childhood phase and their use for 
the acquisition of task-specific skills with reinforcement learning in a later phase. The model was 
validated by successfully reproducing data obtained in a psychological experiment, in which 
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participants had to hit a rewarded area on a touch screen while avoiding touching penalty areas, facing 
various cost and position configurations. In these tests, similarly to humans, the model exhibited a 
remarkable capability of shifting movement endpoints within the target area taking into account the 
possibility of hitting the penalty areas due to motor and neural noise. Most neural-network models of 
motor learning and control proposed so far focus on the extraction of compact representations of 
sensory-to-motor mappings. In this respect, the experiments presented here show that adding 
reinforcement learning components to such models can enables a sensorimotor control loop to take 
into account the statistical properties of the motor system. This can be very important to effectively 
solve the location-redundancy problem and thus increase behavioral performance. Neural population 
codes, as used in RL SURE REACH, seem to be well suited to encode knowledge about the statistical 
properties of tasks and our sensorimotor systems [11], [12]. The results reported here show that this 
knowledge is necessary to achieve ones goals optimally accounting for sensorimotor uncertainty. 

2.11 Improvements in Analogy-Based Anticipations (NBU) 

NBU published several papers on goal-directed anticipatory behavior based on reasoning by analogy. 
AMBR forms the core of NBU’s architecture. The IKAROS system (from LUND) was integrated in 
two of the publications in order to handle real-world perception information. Also comparisons of the 
behavior of the resulting architecture with psychological data were carried through. The architecture is 
tested in 'finding an object' scenario in several environments. The experiments were either carried 
through in simulation or with a real robot.  

Although there are currently no direct comparisons with other architectures, it is planned to 
compare the performance of the AMBR/IKAROS model with the performance of a connectionist 
model. Hereby, the task will be likely the same used so far, that is, to find a bone hidden under one of 
three shapes. Every model would have to identify the three shapes and to point to the one under which 
the bone is hidden. After each trial the system will receive feedback about the 'correct' solution. 

The bone will be hidden using one of following strategies: 
1.        Same property -e.g. 'The bone is always under a red shape' 
2.        Same relation - e.g. 'The bone is under the shape with unique color' 
3.        Complex - e.g. 'The bone is under the left object of two objects with same color.' 

A Neural Network model could be seen as a traditional approach in such tasks. In preliminary 
experiments, a simple NN was trained to solve a task using strategies of type 1. It is planned to 
collaborate with a project partner for finding a NN that provides good results for the other two 
strategies. But, of course, it is expected that the AMBR/IKAROS approach will provide better results 
than most NNs because: (1) It can generate predictions using a small number of memorized situations 
(even one past episode is enough for making analogies). (2) It can 'catch' complex rules like 2, 3 
(shown above). (3) It can give correct solutions even when using different hiding strategies. (4) It is 
context sensitive so that in different contexts different solutions can be generated. 

The first paper (Petkov, et al, in press) uses the AMBR model of analogy-making as a basis, but 
it extends it with new agent-types and new mechanisms that allow anticipating in relation with 
analogical transfer. The role of selective attention on retrieval of memory episodes is tested in a series 
of simulations and demonstrates the context sensitivity of the AMBR model. The results of the 
simulations clearly demonstrated that endowing robots with analogy-based anticipatory behavior is 
promising and deserves further investigation. 

The second paper (Petkov, Kiryazov, Grinberg, Kokinov, in press) investigates anticipation by 
analogy further. First, the role of selective attention is explored both with simulation data and within 
psychological experiment. After that, the AMBR model for analogy-making is extended with a simple 
anticipatory mechanism and it is demonstrated how top-down perception and analogical transfer can 
both be based on one and the same anticipatory mechanism. Finally, attention and action mechanisms 
are added to the model and AMBR was implemented in a real robot that behaves in a natural 
environment. 

Finally, the third paper (Kiryazov, Petkov, Grinberg, Kokinov, Balkenius, in press) outlines an 
approach to building robots with anticipatory behaviour based on analogies with past episodes. 
Hereby, anticipatory mechanisms are used to make predictions about the environment and to control 
selective attention and top-down perception. An integrated architecture is presented that perceives the 
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environment, reasons about it, makes predictions and acts physically in this environment. The 
architecture is implemented in an AIBO robot. It successfully finds an object in a house like 
environment. The AMBR model of analogy-making is used as a basis, but it is extended with new 
mechanisms for anticipation related to analogical transfer, for top down perception, and for selective 
attention. The bottom up visual processing is performed by the IKAROS system for brain modelling. 
The paper describes the first experiments performed with the AIBO robot and demonstrates the 
usefulness of the analogy-based anticipation approach. 

2.12 Motivations and Schemas in Interplay (ISTC-CNR) 

ISTC-CNR continued its research on schema-based architectures that now include motivational drives 
in elaborate schemas. The interplay of the schemas is highly interesting and shows typical behavioural 
effects such as over-drive to hunger. The publications also compare reactive and anticipatory strategies 
in a predator-prey scenario. The three papers are introduced shortly in the following texts.  

In Pezzulo and Calvi (2006) a schema-based agent architecture, which is inspired by an 
ethological model of the praying mantis, was introduced. The architecture includes an inner state, 
perceptual and motor schemas, several routines, a fovea, and a motor controller. The design and 
implementation of the architecture is described and it is used for comparing two models: the former 
uses reactive, stimulus-response schemas whereas the latter involves also forward models, which are 
used by the schemas for generating predictions. Our results show an advantage in using anticipatory 
components inside the schemas. 

In the second paper (Pezzulo, Calvi, Castelfranchi, 2007), a layered (schema-based and 
deliberative) architecture was implemented and tested in the guards-and-thieves scenario, also 
comparing it with other strategies such as A* and BDI. DiPRA (A Distributed Practical Reasoning 
Architecture) implements the main principles of practical reasoning via the distributed action selection 
paradigm. We introduce and motivate the underlying theoretical and computational peculiarities of 
DiPRA and we describe its components, also providing as a case study a guards-and-thieves task. 

Finally, in Pezzulo and Calvi (in press) a theoretical analysis of schema-based design (SBD), 
which is a methodology for designing autonomous agent architectures, was presented. Besides SBD; 
an overview of the AKIRA Schema Language (AKSL) is given, which permits to design schema-based 
architectures for anticipatory behavior experiments and simulations. Several simulations using AKSL 
were reviewed, highlighting the relations between pragmatic and epistemic aspects of behavior. It is 
shown that anticipation was crucial in realizing several functionalities with AKSL, such as selecting 
actions, orienting attention, and categorizing and grounding declarative knowledge. 

2.13 Anticipatory Coordination (ISTC-CNR) 

The work package efforts extended even further into the social aspects of anticipatory agents. First, 
Piunti, Castelfranchi, and Falcone (2007) published a paper on anticipatory coordination through 
action observation and behaviour adaptation. 

The paper proposes a computational multi agent system (MAS) where agents are built to exploit 
environment traces, "mind reading" and plan recognition capabilities in order to anticipate other 
agents’ mental states and therefore adapt their behavior for an anticipatory social interaction.  

An agent exploits such mind reading capabilities by observing other agent during their practical 
behavior and by including "expectations" about their future behaviour in its reasoning process.  On the 
basis of a recognized pattern (i.e. a plan) an observer may predict what sequence of actions will be 
performed by an observed agent. By so doing, observer agent is leaning to be anticipatory regards 
other ones in competitive or cooperative terms. Once an expectation about an observed agent is given, 
the agent has two alternatives: (1) Try to modify its own behavior to exploit or avoid the outcomes of 
actions performed by others. (2) try to influence the behaviour of the observed agents, in order to help 
or prevent their goals. 

An experiment and a case study are given, showing all the phases of the anticipatory interaction 
between agents, from recognition of behavior to intention reconsideration and behaviour adaptation. 
The work does only present a computational model in its early release, without either performance 
analysis or evaluation of MindRACES metrics of interest. 
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2.14  Backward vs. Forward-oriented Decision Making in the Iterated Prisoner’s Dilemma: A 
Comparison between Two Connectionist Models (NBU) 

Lalev and Grinberg (in press) study two recurrent neural network architectures playing the iterated 
prisoner's dilemma. Both models are based on common recurrent network architecture. While the first 
model used backward-oriented reinforcement learning methods, the second network basis its 
movement decisions on generated predictions about future games. Thus, both models involve 
predictions of the opponent’s move and of the expected payoff and have an in-built autoassociator in 
their architecture aimed at a more efficient payoff matrix representation. However, only the latter 
network anticipates the actual behavior of the opponent player. The role of the models’ building 
blocks and mechanisms is investigated and discussed and finally, comparisons with experiments with 
human participants are presented. The results suggest that human players use anticipatory capabilities 
to guide their decision process within the game. As with actual human participants, the cooperation 
rate of the latter network depended on a so-called cooperation index, which quantifies the likelihood 
that the opponent player cooperates. Thus, the results suggest that anticipatory connections are 
mandatory for efficient human-like network interaction within the iterated prisoner's dilemma game. 

2.15 An Experimental Study of Anticipation in Simple Robot Navigation (LUND) 

Finally, Johansson and Balkenius (in press) study the benefits of anticipating the behavior of another 
robot agent. They placed two real robots in differently complex arenas with the task of switching 
places with each other. The results show that in very simple environments without obstacles, a goal-
directed behavioral strategy without any consideration of the opponent player, except for a reactive 
hard-coded obstacle avoidance mechanism, yielded the most efficient behavior. However, in more 
complex environments, in which robot interference is inevitable and harder to resolve, anticipatory 
mechanisms yielded the fastest behavior. In this case, the anticipatory mechanism predicted the 
behavior of the opponent robot and resolved possible trajectory conflicts online. Thus, it is shown that 
higher complex environments can make more complex, cooperative, anticipatory mechanisms 
beneficial. In very simple interactive environments, on the other hand, ignorance of the opponent or 
cooperative player can also be more effective, since no expensive contemplations or communicative 
interactions are necessary.  

Thus, the paper essentially presents an experimental study using two robots. In the experiment, 
the robots navigated through an area with or without obstacles and had the goal to shift places with 
each other. Four different approaches (random, reactive, planning, anticipation) were used during the 
experiment and the times to accomplish the task were compared. The results indicate that the ability to 
anticipate the behavior of the other robot can be advantageous. However, the results also clearly show 
that anticipatory and planned behavior is not always better than a purely reactive strategy. 

3 Conclusions 

As deliverable 4.1 had, this document shows that there are many types and challenges for anticipatory 
behavior systems. Solutions are never straight forward and it is often hard to estimate if anticipations 
will be useful at all in the applied context.  

In the introduction, we had proposed the further investigation of  
• the XCS architecture, which was accomplished by the XCSF advancements; 
• the artificial immune system architecture (AIS), which is now applied to an AIBO robot 

control task; 
• inverse gradient methods and reinforcement learning techniques, which were applied to 

predict deep memory POMDP problems as well as for robot navigation; 
• inverse model-based systems, which are now being combined for target selection and control 

problems for redundant arm control and efficient target location selection 
• context-based systems, which are now included in several top-down bottom up interactions 

including the SURE_REACH architecture but also the analogy-making architectures. 
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• analogy-based systems, which was accomplished in the AMBR architecture, its combination 
with IKAROS, and the successful application to the AIBO platform.  

• Finally, also recurrent neural network approaches were further investigated proposing a new 
testbed and evaluating Elman networks as an exemplary RNN. 

Additionally, deliverable 4.1 pointed out that different anticipatory capabilities should be 
investigated further. These were tested and extended in several forms:  

• Inverse modeling capabilities were enhanced within two separate arm control architectures 
(developed by UW and ISTC-CNR) leading to the combination into RL_SURE_REACH. 

• Behavioral adjustments due to unexpected sensory inputs are accomplished in the schema 
architectures investigated and enhanced, since schemas depend on their accuracy to be active 
and also can trigger surprise effects.  

• Task-dependent planning mechanisms were investigated in the robot switching places task as 
well as in a sense in the analogy making task.  

• Motivational mechanisms were coupled with behavioral decision making and control in the 
schema architecture framework.  

• Epistemic actions were present in the schema architecture but also in the analogy making 
architectures. 

• Besides these accomplishments, also the social components of anticipatory behavior for goal-
directed behavior and learning were studied and advanced.  

Thus, we believe that we can conclude that the work in workpackage 4 progressed nicely. 
Collaborations are springing off, which will be further reported on in workpackage 6 and will continue 
until the end of the project. The main systems of the partners were continuously enhanced and 
improved. Moreover, several investigations have shown that novel systems needed to be created to 
deal with the control problem of redundant plants (realized in the SURE_REACH architecture) and 
also to improve social interactions. For further details on the accomplished aspects of this work, the 
papers, mentioned in the different sections, are available on the MindRACES webpage 
(www.mindraces.org). 
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