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PART 1 – Management Overview 

Document Control 

This document is a co-production of all the partners mentioned above. First, system information, 
relevancies, capabilities, and references were gathered from the partners (initiated on 22.04.2005, all 
included descriptions received on 06.06.2005). Then, the responsible author put the information 
together and provided an overarching perspective on the systems’ potentials – individually and in 
combination. This first draft version was sent to all authors for verification (07.06.2005). The final 
version was presented to the program coordinator on 12.06.2005. Comments from the coordinator 
were received on 04.07.2005. Final version was produced on 07.07.2005. 

Executive Summary 

This document classifies and differentiates all systems relevant to workpackage four: Goal-directed 
behavior, pro-activity, and analogy. The workpackage is mainly concerned with anticipatory (goal-
directed) action decision making and action control that is controlled by predictions and analogical 
reasoning. Essentially, the document assesses the potential of each relevant model to predict the 
future, potentially including and incorporating own future actions, motivations, and emotions. The 
document examines and compares the relevant models with respect to their predictive and anticipatory 
capabilities. We assess weaknesses and strengths of the architectures in generating predictions and 
using those predictions for the generation of anticipatory cognitive functions. Solutions are suggested 
that will enable agents to predict at different time scales and at different levels of abstraction. 
Moreover, solutions are suggested how to enable effective top-down cognitive influence resulting in 
goal-directed behavior mechanisms and pro-activity. 

It is shown that the different system capabilities cover the whole spectrum of the mechanisms 
necessary to generate the desired anticipatory, cognitive embodied systems. However, it is also shown 
that without effective collaboration and knowledge exchange between the partners, the capabilities are 
expected to stay limited. Although one part of the work relevant to workpackage four and the whole 
MindRACES project consists in the further development and evaluation of the predictive and 
anticipatory capabilities of each system in separation, the biggest challenge will be to combine the 
different capabilities, such as, for example, context processing capabilities with long term dependency 
learning capabilities and grammar learning capabilities, to induce maximally effective predictive 
environmental representations that are most suitable for the goal-directed behavior mechanisms, 
expected to be generated by the means of the predictive representations. The scenarios developed in 
workpackage two are expected to help stimulate the interaction of the partners further as well as to 
identify potential collaborations amongst them. However, this document suggests many potential 
collaborations and system combinations between the partners and may serve as the guidebook for the 
generation of competent anticipatory cognitive embodied systems that learn and exhibit effective 
anticipatory, goal-directed behavior exploiting their emergent predictive representations most 
effectively. 
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PART 2 – Deliverable Content 

Introduction 

This critical comparison of mechanisms based on analogy, proactive and goal directed behavior 
focuses on those systems that the partners are interested in investigating further during the 
MindRACES project. The aim of this deliverable is to contrast the capabilities of the systems – putting 
them into the broader project perspectives and comparing their potentials and drawbacks with respect 
to workpackage four: Goal directed behavior, proactivity and analogy. We use a general taxonomy to 
evaluate the systems with respect to their (1) predictive capabilities and their (2) anticipatory behavior 
capabilities, that is, their capabilities of using these predictions for improving action decision making 
and action control by analogical reasoning mechanisms as well as proactive and goal directed behavior 
mechanisms. 
 In this document, the word “prediction” refers to the capability of predicting future properties 
whereas the word “anticipation” and particularly “anticipatory behavior” refers to mechanisms that use 
predictions to improve other mechanisms including learning and behavior. Since anticipations cannot 
exist without the capability of predicting future properties, it is necessary to first understand and 
differentiate amongst predictive capabilities. Then, it is possible to evaluate potentials for anticipatory 
behavior. 
 Particularly, predictive capabilities are differentiated with respect to (1) the types of 
predictions represented, (2) the quality or accuracy of the predictions, (3) the time scales of the 
predictions, (4) the generality of the predictions, (5) the capability of incorporating context 
information and action decision information for improving predictions, (6) the focusing and attentional 
capabilities of prediction generation, and (7) the capability of predicting inner states. Anticipatory 
capabilities distinguish the influence of predictions on (I) learning, (II) attention, (III) action initiation 
and control, and on (IV) decision making.  
 The remainder of this document is structured as follows: First, we introduce the systems that 
are of interest to the project. Next, we introduce the taxonomy used to evaluate and contrast the 
different systems. Finally, we put the different systems into perspective by evaluating their capabilities 
and future potentials using the proposed taxonomy.  

1 Relevant Systems 

This section introduces the project- and workpackage-relevant systems giving a short informal 
overview over their capabilities and general architecture. The interested reader is referred to the 
provided references for details on the system architectures. 

1.1 The Alvinn Phenomenon 

An intriguing early implicitly anticipatory system architecture can be found in one follow-up version 
of the robot Alvinn (Pomerleau, 1989). A feed-forward neural network steers a car on the road. This is 
done in a supervised setting: the human teacher has steered the car, and the (visual) observations and 
his responses at every time step have been stored in the dataset, providing input-target samples. The 
crucial additional – anticipatory – feature of the system is that the neural network must not only learn 
the target responses at every time step, but also predict the observations at the next time step. This 
apparently "shapes" the internal structure of the feedforward neural network such that it is much easier 
to successfully learn the correct target responses. It essentially puts the burden of state discrimination 
(compare with a standard POMDP) on the next-step-predictions (where the neural configurations at 
every time step are then the "states"), reducing the action production to a relatively simple state-action 
mapping. 

From this, two important lessons can be drawn: (1) Supervised learning of control sequences 
might be an option for learning behavior. (2) Anticipatory "shaping" of the network can be an effective 
tool to reduce the difficulty of learning supervised control. Anticipatory shaping mechanisms will be 
part of the future research in the MindRACES project using more advanced, potentially recurrent NNs. 
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Questions about the nature and limits of such shaping advantages will be investigated. It is expected 
that shaping via learning of state predictions will be helpful in all environments in which successful 
behavior patterns strongly depend on sensory input and feedback. Since this seems to be the case in 
basically all natural tasks, anticipatory shaping is expected to be effective most of the time.  

1.2 Predictive Learning Models 

Predictive models are at the forefront of anticipatory models. These models were used and evaluated 
in learning different types of predictions. However, they were usually – or only to a limited extend – 
applied for the generation or control of anticipatory mechanisms. The following paragraphs give 
introductions to the project-relevant systems.  

1.2.1 The XCS System Architecture 

The XCS classifier system evolves a set of rules, the so-called population of classifiers, by the means 
of a steady-state genetic algorithm (GA). A classifier consists of a condition part, an (optional) action 
part, and a prediction part. The condition part specifies when the classifier is applicable and the action 
part specifies which action, or classification, to execute. The prediction can be a real-valued reward 
prediction, a prediction vector in form of a weight vector, a symbolic prediction, or any other type of 
prediction that can be compared to the feedback available.  

XCS System Overview 

XCS iteratively updates its population of classifiers with respect to the successive problem instances 
and feedback. Each classifier maintains a relative accuracy estimate, which estimates the relative 
accuracy of its predictions in the problem. Fitness is derived from the accuracy measure so that XCS 
propagates higher accurate classifiers. Generalization is realized by niche-based reproduction in 
combination with population-wide deletion. Mutation and crossover induce search in the local, 
structural neighborhood of current subsolutions.  

XCS has been successfully applied to many problem domains including RL problems (mainly 
Markov decision processes) (Wilson, 1995; Butz, Goldberg, & Lanzi, in press), classification 
problems (Binary problems and a large variety of real datasets, Butz, 2004a, Bernado-Mansilla, 
Garrell-Guiu, 2003), and function approximation problems (Wilson, 2002; Butz, in press). The broad 
applicability of the system as well as the recent confirmation that XCS can PAC-learn k-DNF 
problems with few additional restrictions confirms XCS’s broad applicability and strong learning 
potential in diverse problem domains. Essentially, XCS evolves the condition structure and the 
consequent problem space partitioning in such a way that the partitioning is most effective for the 
required predictions. Predictions are optimized via gradient descent techniques and meanwhile 
evaluate the accuracy of the prediction itself. Thus, condition structure and prediction mechanisms 
should be combined most suitably for the problem at hand. 

For the MindRACES project, the system is expected to serve well as (1) a general predictive 
online-learning mechanism as well as (2) a feature extraction mechanism that extracts features most 
suitable to generate accurate predictions. 

1.2.2 Fractal-based Future Representations 

The concept of Prediction Fractal Machines (PFM) origins from constructing language models (Parfitt 
et al 1999) and has also been used in genetics (Prum 1995), finance (Bühlmann 1998) or seismology 
(Brillinger 1994). The method creates a fractal map of the training data, from which state machines are 
built; the resulting models are known as Prediction Fractal Machines. 

We model our idea from the concepts introduced by Parfitt et al. (1999), who construct language 
models with ‘graded’ grammaticality and well formed state trajectories. This method has also been 
studied in financial prediction tasks and creates a fractal map of the training data, from which state 
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machines are built; the resulting models are known as Prediction Fractal Machines. Underlying this 
model is the notion of ‘graded grammaticality’ rather than absolute grammaticality.  
 
Graded grammaticality in Prediction Fractal Machines 
Tino’s and Dorffner’s method for constructing language models uses finite-context predictive models 
in spirit to Variable Memory Length Markov Models (VLMMs) (Tino and Dorffner 1998). The key 
idea is a geometric representation of candidate prediction contexts where contexts with long common 
suffixes are mapped close to each other, while contexts with different suffixes correspond to points 
lying far from each other. Selection of the appropriate prediction contexts is left to a vector quantizer. 
Dense areas in the spatial representation of potential prediction contexts correspond to contexts with 
long common suffixes and are given more attention by the vector quantizer. 

The resulting model distinguishes between grammatical and ungrammatical utterance in natural 
English language. Parfitt et al. (1999) compare this method with Simple Recurrent Networks (SRNs) 
and measure the differences by generating minimal pairs and comparing their negative likelihoods 
(NLLs) per symbol with respect to the model. The experiments support a concept of ‘graded 
grammaticality’, implying that ‘meaningless’ data clearly produced different results than either 
grammatical or ungrammatical data. PFMs showed to be able to discriminate better between grades of 
well-formedness than simple recurrent networks (SRNs), shown by clearly differing NLLs. If a 
subsequence in a well-formed utterance occurs only rarely – or never – in a training set, it will have a 
highly associated NLL in the same way as an ungrammatical one does. This happens to occur mainly 
for very large corpora, since some grammatical structures are rare. Additionally, a recent finding is 
that during human sentence processing well-formedness is linked to conformity with expectation (see 
Coulson et al 1998) as measured by CLOZE scores.  

Of course this notion of well-formedness and expectation could be useful for the MindRACES 
project.  

1.2.3 Long Short-Term Memory (LSTM) 

LSTM models are recurrent artificial neural network architectures that are endowed with neural gate-
based structures. Input gates and output gates guard input/output access to the internal states of 
neurons, enabling the algorithm to maintain memory over theoretically infinitely long periods of time. 
The networks have been shown to effectively deal with the problem of vanishing gradients, which is 
usually a major limitation in other recurrent NN structures especially in problems, in which long-term 
dependencies need to be remembered. LSTM can remember and relate events far apart in time. It is 
thus expected to be most suitable as a prediction tool for anticipatory systems that need to detect long-
term dependencies (in memory) or that have to deal with POMDP problems. 

LSTM NNs use “memory units” that us a “constant error carrousel” (CEC) to backpropagate error 
theoretically infinitely back in time. The memory units are protected by an input gate and an output 
gate that multiply incoming activation and outgoing activation to effectively “gate” the memory 
information so that it can apply only when necessary. In later papers, an additional forget-unit is 
learned that makes the timing of the memory unit more precise and allows to learn from continuous 
streams (this especially makes the previously necessary network reset obsolete in many problems) 
(Gers, Schmidhuber, Cummins, 2000). Additional “peephole connections” can be used to focus the 
memory unit further to apply really only when necessary developing precise timing by periodical 
activity or counting-like activity. The addition of Kalman-filter enhanced learning (Perez-Ortiz, Gers, 
Eck, Schmidhuber, 2002) increases learning speed by orders of magnitude but also – of course – 
increase the learning complexity of the system. 

1.2.4 Combined Bottom-Up / Top-Down Hierarchies 

Adding hierarchies to anticipatory systems is expected to enhance the system's ability to abstract and 
generalize, while reducing the search space enormously. Hierarchically combined recurrent neural 
network systems, in which lower layers feed into higher layers, have been shown to effectively 
enhance certain abstraction and generalization properties of such systems as a whole (Riesenhuber, 
Poggio, 1999).  
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However, systems where higher layers do also influence the lower layers are even more 
interesting. Imagine a cascaded RNN where every layer is predicting its own state at the next time 
step. Higher level layers try to model the behavior of the lower level layer, correcting lower layers 
when the lower levels do not have a high-enough level of abstraction to reliably predict their own 
state. In other words, we envision systems where high-level components, where possible, anticipate 
and correct the state of lower level components. For example, Rao and Ballard (1997) implemented 
this idea by means of a form of hierarchical Kalman filter implemented in a hierarchical recurrent 
neural network. In their method, uncertainty about anticipations by components of other components 
is estimated, affecting the amount of influence the levels have on each other (when the higher level is 
very certain that an event is going to happen in a lower layer, it has more control over the lower layer 
than when it is not certain at all). Additionally, we imagine the inclusion of attention in the framework 
in that attention may increase the top-down influence dependent on current motivations, emotions, or 
intentions.  

More advanced variants of such systems are expected to be implemented during the project, using 
techniques such as the gating mechanisms in LSTMs and the information combination mechanisms 
used in Kalman filters. Additionally, several hierarchies should be implemented, such as one for action 
and motor control and one for visual processing, as proposed recently (Poggio, Bizzi, 2004). 
Interactions between the two can be manipulated with Rao and Ballard’s original proposition (1997), 
or more recent approaches, such as the mechanisms in Grimes and Rao (2005).   

1.3 Schema Mechanisms 

Schema mechanisms refer to systems that create context-action-effect structures. The structures are 
proposed to be used to generate action-dependent predictions effectively and to cause anticipatory 
behavior competence. The original ideas stem from the work of Kant (1781) and Piaget (1954). Piaget 
proposed to represent an object as a set of expected interactions with the environment. Besides Piaget, 
also Gibson always stressed that perception without action is basically meaningless (1979). 

Drescher’s schema mechanism (Drescher 1991) is a constructivist mechanism inspired by the 
work of Piaget (1954); it represents an object as a set of expected interactions with the environment. 
The schema mechanism learns to anticipate the consequence of its actions by creating three parts 
schemas “context/action/result”; contexts and results are items (propositions) that can assume the 
values “on” or “off”. The schema mechanism performs mainly two operations: Empirical learning and 
concept invention. Empirical learning consists in finding a result item that is relevant to an action, as 
well as context items that make the result reliable (it uses a statistical method called marginal 
attribution). Concept invention consists in postulating/reifying synthetic items (objects, not directly 
sensed) as the “cause” of the perceptions; this property permits to improve the ontology of the system. 
 

1.3.1 Schema Theories of Arbib, Arkin, and Roy 

Related schematic theories (Arbib 1995, Arkin 1998) share resemblances with the concepts of frames 
in Minsky (1975) and scripts in Schank and Abelson (1977). Schematic theories are strongly 
motivated by biological and ethological models; some of the first works are in fact the attempt to 
replicate into robots the behavior of cockroach, mantis and rana computatrix. Schemas are conceived 
as coarse grained modeling unities and opposed e.g. to neural networks that are more fine grained (in 
some implementation they are however decomposed and ultimately realized as neural networks; 
however, it has to be stressed that the descriptive level is coarser). Schemas include perceptual and 
motor elements to form coordinate control programs: a schema can be activated by sensory input or 
internally generated goal states, and many arbitration mechanisms are described in literature for 
selecting the more appropriate one among the active ones (they share some resemblances with some 
action selection mechanisms (e.g. the behavior networks, Maes 1990) as well as with the subsumption 
architecture (Brooks 1991)). The implementation of Arkin is based on potential fields, while Arbib 
uses mainly (recursive) neural networks; Roy (2004, submitted, see below) uses several machine 
learning techniques for different, interacting modules in his approach. 
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Schematic theories stress the procedural knowledge (versus declarative): “a schema constitutes the 
long term memory of a perceptual and/or motor skill, or the structure coordinating such skills”. They 
are especially well suited for parallel and distributed systems, since they can be seen as concurrent 
computing unities. Lyons and Arbib (1989) describe a language for implementing schemas in robotic 
applications. Schematic theories were not originally conceived for anticipation; in fact, Arkin 
describes their use mainly in the perspective of reactive and behavior based robotics. However, 
schemas embed a predictive component that is used for action selection (it could be in principle even 
used for offline planning and for online control of action, although these aspects are not stressed in the 
available literature). 

The recent work of Roy (also inspired by Piercean semiotic) extends the schematic approach by 
coupling sensorimotor engagement, expectations, and active perception. Schemas are also more 
sophisticated: they are actually networks of beliefs (either analog or discrete), linked by six possible 
actions, that are called projections (sensors, actions, transformers, categorizers, intentional projections, 
and generators). The anticipatory nature of schemas is stressed: “Beliefs are both memories of what 
has transpired, and also predictions of what will transpire (contingent on action)”.  Schemas are 
parametric and can be concatenated or abstracted. The whole apparatus is constructive and follows the 
‘active perception’ paradigm: perception depends on understanding the effects of movements on 
sensory stimulation, thus it is intrinsically based on anticipations. The robot “Ripley” (as well as other 
robots) is equipped with (hand-made) schemas that provide paths from actions to anticipated 
sensations. For example, the following picture shows a schema for active sensing of compliance 
through grasping. 
 

 
Figure 1 

Roy introduces schemas for objects, properties, events and situation; all these representational 
primitives expressed in the same formalism: in this way “beliefs about concrete objects (e.g., cups) 
[can] be efficiently translated into expectations with respect to actions”. For example, in a way that is 
similar to Drescher’s SM, objects are represented as the set of possible interactions with it (also 
capturing in a natural way the notion of affordances, Gibson 1979). 

 
Figure 2 

Roy aims at providing a means for grounding language by proposing “a computational path from 
sensing and motor action to words and speech acts”. Grounding itself is defined as a causal-predictive 
loop, stressing the anticipatory nature of action and event sensing. 
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1.3.2 DYNA-PI models 

The subsequent systems control their behavior by the means of a schema-related representation. One 
of the simplest ways of implementing an anticipatory system is to use models for training the 
controller. For example, if we have an evolutionary algorithm for evolving a (neuro)-controller, we 
could replace the "real world" by a predictive model of the world rather than the real world itself, and 
evolve on that instead of executing real actions. This could speed up learning very much. Care must be 
taken to occasionally execute actions in the real world in order to continually update the world model. 

The basic architecture of a DYNA-PI model (Sutton, 1990) is shown in the figure below. The core 
of the model is the actor-critic architecture (Sutton and Barto, 1998). The evaluator implements the 
“evaluation function” and the actor the “action policy”. The novelty is the “model of the world”. This 
model is composed of two functions, the state transition function ST, and the reward function R (these 
functions might be stochastic, cf. Sutton and Barto, 1998): 
yt+1 = ST(yt, at)               rt+1 = R(yt, at) 

The world model is used to predict the consequences of actions, in terms of reward and future 
state of the world, one step later. The key idea of the DYNA-PI models is that an agent endowed with 
a world model can produce “simulated experience” and train the evaluator and actor in the same way it 
would train them through real experience. Assuming that the world model is enough accurate, if the 
actor is trained with simulated experience its potential performance in the real world improves, hence 
this process implements a form of planning in the case the actor is actually used to act in the real 
world. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
One key system that is able to generalize over states and uses an internal, generalized state 

population to predict reward is the XACS system (Butz, Goldberg, 2003). The system does not only 
evolve (via gradient-based techniques and genetic algorithms) a highly general model of its world but 
also approximates a state-value function with a maximally general representation. The system allows 
internal simulation of events that showed to improve learning significantly. Additionally, the problem 
of a potentially over-general model for accurate reward prediction is overcome. 

It should also be noted that predicting the utility of actions has been shown to be a useful 
technique in many applications of which the most prominent example is the use of regular action-
value-estimators in reinforcement learning. However, such predictions are just a simple form of 
implicit anticipation. More elaborate are techniques where a whole discounted future utility 
distribution is anticipated, as for example McCallum (1996) has done in order to be able to do state 
discrimination. Further research into this subject might be helpful, where such distributions are 
estimated using more advanced RNNs instead of using HMMs or decision trees. 

1.3.3 Planning with neural networks 

Baldassarre (2001, 2003) designed, implemented and investigated some predictive-planning 
controllers built with neural-networks and inspired by DYNA-PI architectures (Sutton, 1990). The 
controllers are tested with a simulated robot with a 1D camera that solves stochastic path-finding 
landmark navigation tasks (the robot acts in an arena with white walls and black pillar landmarks by 
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selecting one out of 8 actions per time). The controllers, unlike the DYNA-PI architectures, are 
taskable: they can be assigned arbitrary goals and are capable of achieving them in an efficient way 
from the first time. The controllers build a “partial policy” focused on efficient start-goal paths, and 
are capable of deciding to re-plan if “unexpected” states are encountered. In several experiments the 
generalization capacity of neural networks proves important for learning. 

The simple “forward planner” version of the controllers implements planning by iteratively 
generating “chains of predictions” from the position currently occupied by the robot, on the basis of 
forward models. The pseudo-experience so generated is used to train the reactive components of the 
system as in DYNA systems. These forward models are composed of neural networks trained to 
predict the consequence of execution of actions in terms of perception. 

A modular version of the controllers allows the system to store information about achieved goals, 
and to recall such information, so as to decrease the planning burden when the same goals are assigned 
more than one time. In this case the goals are not only used to plan but also to furnish a “motivation” 
to the reactive components of the system. 

Another version of the controllers implements a simple form of neural abstract planning that poses 
enhanced exploration and evaluations’ updating capabilities. Abstraction is implemented in terms of 
planning on the basis of macro-actions (actions composed of n actions of the same time, e.g. north-
north-north) and action execution at the primitive level. 

In addition to the original DYNA system capability of executing internal rehearsal and 
consequently speeding up behavioral learning to gain external reward as fast as possible,  
Baldassarre’s (2001, 2003) NN planner can implement planning with respect to the achievement of 
any externally or internally generated goal, thanks to the additional internal generation of rewards. 
Indeed, while DYNA learns to predict rewards associated to states, the NN planner possesses a 
"reward generator", named "matcher”, which generates an internal reward when the system achieves 
its current goal.  

An earlier, similar NN planner was published in the early nineties by Schmidhuber (1990b, 1990d, 
1991b). Schmidhuber learned a recurrent NN model and could show capabilities of reinforcement 
learning and planning in dynamic environments. He also investigated the capabilities of simulating 
curiosity and boredom with the architecture. Interestingly, most recently Alexander Gloye won the 
robot soccer world cup (FU-Fighters Small Size 2004) applying parts of the NN planner in some of the 
modules of his modular and hierarchical control architecture (Gloye, et. al., 2004). 

In yet another context, Kersting et. al (2004) applied Dyna-based ideas to a logic-based, relational 
world model framework. Using dynamic programming techniques and a matcher mechanism similar 
to the one by Baldassarre’s and Schmidhuber’s approaches, desired goal states are activated and then 
propagated through the logic-based relational world model. The first-order logic-based abstractions in 
the world model showed to improve behavior and planning capabilities significantly also enabling 
generalization to similar context.   

The inclusion of matcher modules that generate internal rewards and link them to the appropriate, 
correlated state properties should be investigated further in the MindRACES project and also 
incorporated in other, related system architectures such as the XACS system.  

1.3.4 The Anticipatory Classifier System ACS2/XACS 

Anticipatory learning classifier systems (ALCSs) are learning systems that learn a generalized 
predictive model of an environment online. Predictive knowledge is stored in rules, called classifiers, 
which together represent the model. ALCSs do not only implement the schema mechanisms principle 
but also realize the learning principle of anticipatory behavior control outlined by Hoffmann (1993). 
An English version of the basic principle is available in Hoffmann (2003).  

The ACS2 system (Butz, 2002) combines heuristic search with genetic generalization mechanisms 
to learn the model online. More recent publications successfully combined the model learning 
capabilities of ACS2 with the evolutionary online generalizing RL mechanism XCS (Wilson, 1995). 
The resulting system XACS (Butz, 2003) learns a generalized state value function using XCS-based 
techniques in combination with the model learning techniques of ACS2. The system shows to robustly 
learn optimal behavioral policies. Policy learning was improved by exploiting the knowledge of the 
predictive model using DYNA-based update techniques (Sutton, 1990).  
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XACS combines the model learning capabilities of ACS2 with the reinforcement learning 
capabilities of XCS.  In the next paragraphs, first both systems are introduced; next the combination in 
XACS is described. 

ACS2 learns a predictive model of an encountered environment specifying the consequences of 
each possible action in each possible situation. The predictions are represented explicitly in so-called 
classifiers, or rules, which specify condition-action-effect triples where the effect specifies which 
sensory inputs are expected to change after executing the specified action, given the specified 
conditions are satisfied.  In reinforcement learning terms, ACS2 learns the state transition function of 
an MDP. While interacting with an environment, the population of ACS2 increasingly approximates 
the state transition function of the MDP. Usually, the agent starts without any prior knowledge except 
for the knowledge implicitly included in the coding structure and the provided actions. Initially, 
classifiers are mainly generated by a covering mechanism. Later, an anticipatory learning process 
(ALP) generates specialized classifier offspring while a genetic generalization process produces 
generalized offspring. Similarly, over-specialized as well as over-generalized offspring is deleted by 
the evolutionary mechanism.  

Since ACS2 learns a predictive model, i.e. the state transition function of an MDP, dynamic 
programming techniques can be applied using the learned predictive model to approximate the 
Bellman equation representing the state value function of an optimal behavioral policy. To learn the 
state value function, the XCS classifier system is used (Wilson, 1995). XCS's learning is based on the 
accuracy of the reward prediction values of classifiers. Each classifier in XCS (in the XACS 
framework) represents a condition and a reward prediction. The XCS module learns an approximation 
of the state-value function represented in its classifier population using evolutionary learning 
techniques. Fitness of XCS classifiers is derived from the accuracy of their reward predictions. 
Reproduction in XCS is based on fitness reproducing in action sets (problem niches) and deleting from 
the whole population. A complete overview over the advanced learning theory on XCS can be found 
elsewhere (Butz, 2004). 

For the interaction with ACS2 in XACS, parameters in the XCS module are updated each time 
XACS perceives a situation and an immediate reward, that is, they are updated each learning iteration. 
The expected discounted future reward is determined by using the ACS2 module to determine all 
possible future states and by the XCS module to determine the expected reward in these future states.  

Together, it was shown that XACS learns optimal behavioral policies in problems in which ACS2 
failed previously as well as in problems in which a tabular approach would take significantly longer to 
succeed. Recent gradient-based update mechanisms in XCS (Butz, Goldberg, & Lanzi in press) can 
improve performance of XACS so that XACS promises to serve as a robust learner in large, high 
dimensional MDP problems. With respect to psychological plausibility, it was shown that ACS2 can 
be used to simulate learning patterns and behavior consequences previously observed in rats (Butz, 
Hoffmann, 2002). Moreover, since XACS is a system that learns online and from scratch, the 
implementation of an enhanced XACS system is possible that comprises multiple, interacting reward 
learning modules that may be additionally controlled by motivational and emotional constraints. It is, 
for example, imaginable that – dependent on early learning experiences – the emotional patterns of the 
animat may evolve differently resulting in, for example, very “shy" or very “bold" animats. Future 
research will show to what extend the XACS system is suitable for such further investigations. 

1.3.5 The Artificial Immune System Architecture 

Also artificial immune systems (AISs) bear many resemblances with schema mechanisms. These 
immune system inspired architectures were originally introduced by Ishiguro and Watanabe (Ishiguro 
and Watanabe 1998). They are based on Jerne’s immune network theory (Jerne 1974). 

The basic idea is that antibodies are formed into a network that successfully arbitrates between 
simple behaviors on a real robot. An antibody consists of a paratope defining a desirable condition 
and related motor-action called an idiotope which identifies other antibodies to which it is connected. 
Connection between the idiotope of antibody x and the paratope of an antibody y stimulates the 
antibody y. Links between antibodies in the network can either be evolved by a genetic algorithm 
(Watanabe et al. 1998) or formed via on-line adaptation mechanism which provides reinforcement 
signals to links (Michelan and von Zuben 2002). 
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The AIS architecture for autonomous robot control handles behavior arbitration constructed in 
such a way that its links express sequences of actions. A path in the network represents both a past 
history of robot actions (i.e. an episodic memory) and information useful for planning and anticipatory 
capabilities. A related line of research to AIS is that of the application of classifier systems to robot-
control. Webb et al. (2003) have used a classifier system to control a robotic agent in a simulated robot 
environment. Hart et al. (2003) realized an implementation of the AIS approach on a simulated 
Khepera robot and OFAI on the other hand developed a real robot implementation (Rattenberger et al. 
2004).  

 
 

Further Details on the Architecture 
In the beginning, the system is driven by basic instincts such as a “desire to avoid collisions” and a 
“desire to seek novelty”. The robot then should learn through experience, and the learned behaviors 
should gradually take over control from the instinct-driven initial system. The robot therefore needs to 
capture some minimal details of its experiences. In the proposed model this information is held as a 
collection of rule-like associations (RLAs). 

Each RLA is a node in a network and consists of a (partial) description C of sensory information, a 
robot action command A, and a partial description of the sensory effects E of doing the action. After 
creation, an RLA therefore expresses some of the expected results of doing action A in a context C. 
Weighted network links express the sequencing information. For example, a sub-path involving 
strongly positive weights would express an episode. 

In immunological terminology, antibodies correspond to these RLAs, and antigens correspond to 
sensory data (not necessarily just raw data); the C and E parts of an RLA can be regarded as paratope 
and epitope. Much as in Jerne's immune network hypothesis, connections are formed and adjusted by a 
process of recognition between the paratope of one antibody and the epitope of another, and result in 
stimulation and suppression of one antibody by another, according to a dynamical equation suggested 
by Farmer in (Farmer 1986). For further details see (Hart et al. 2003). 

Pathways through the network can be interpreted as an episodic long-term memory. This memory 
maintains a record of relationship between sensory conditions, actions taken, and the consequences of 
those actions. This episodic memory enables the robot to learn how to interact with the environment 
and to naturally form and ground concepts within the RLA network. For example, when passing a 
corner, certain RLAs trigger and as the learning process continues, a certain episode of RLAs emerges, 
that will always trigger while interacting with the corner. 

As described in experiments in (Hart et al. 2003) during the learning phase, the robot learns the 
consequences of its actions within its environment and also learns which actions lead to desired 
behaviors.  

The RLAs also appear to capture some episodes (sequences of sensory events) in a reasonably 
stable manner, so that the robot could be said to have a long-term memory that maintains a record of 
the relationships between sensory conditions, actions taken and consequences of those actions. 

Planning and anticipatory behavior has to emerge from the network: this could occur as a dynamic 
cascade of internal events. For example, a goal is represented as an antigen which is injected into the 
system. As in the immunological system, the network must respond to its antigen – the antigen (goal) 
remains in the system until it is satisfied. At any point in time, the external environment will consist of 
multiple changing data items, representing goals, sensory information and maps and internal memory 
states. The resulting course of action results from a chain of RLAs firing, determined by the 
dynamically changing concentrations of antibodies. Thus, the network effectively records chains of 
events that can allow a desired goal to be achieved. This leads to the emergence of more complex 
behaviors and to anticipatory capabilities. 

Another additional approach could be explored: The RLAs associate expectations with states, 
therefore in theory a virtual antigen could be injected into the system, representing some potential goal 
or action, and the dynamical equations applied to determine what could be the result of such an action. 
By comparing the result of a number of such virtual experiments, a plan could then be selected. The 
network thus provides a blackboard for ‘thought’ experiments by the robot.  

For MindRACES the AIS we will be using a multilayered RLA-Architecture. The first, RLA 
network layer will be purely interactive, realizing simple behaviors, driven by basic motivations. Other 
layers will enable higher behaviors and also anticipation. Just to give a brief preview and introduction 
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– a second RLA layer, supporting the “grounding of actions to objects” will be added and operate on 
top the first. This second network is then responsible for learning and grounding the objects the robot 
encounters.  

The primary purpose of the first layer is to capture “how to” knowledge, which is sequences of 
RLAs that after a specific amount of time and training learn through reinforcement which interactions 
environmental features, or more specific, objects allow. The “how to” knowledge level gets its input 
not only from the sensor values of the AIBO robot but also from so called “virtual sensors”, which are 
functions computed for single sensors or over a certain sensor cluster.  

The second layer can be seen as description layer and in principle is a generalization of the first 
layer. Here the “how to” knowledge which is represented by RLAs of the first layer, is anchored in a 
process of supervised learning. This means that sequences of RLAs that are responsible for specific 
object interactions are recorded in the second layer as these specific objects. Additionally this allows 
the robot to demonstrate the characteristic behavior describing an object, just by performing the RLA 
sequence it saved for that object (e.g. “AIBO show me what you do when you interact with a ball”) as 
well as the creation of a topological map of the environment which corresponds to the topology of the 
second layer RLA network in association with input from virtual sensors of the first layer. In this 
process the object sequences, and therefore object representation in the second layer, should be kept as 
short as possible. Figure 4 gives an example for a short sequence.  This is due to the fact that the 
longer they get the more difficult it is to find general, valid descriptions which allow to be recognized 
again later in the sequences of the RLA network as the robot interacts with its environment. Of course, 
there are several mechanisms and algorithms that allow finding common objects even if the RLA 
sequences are different to some degree, and therefore also allow finding a “common denominator” of 
such objects, but we will not go into detail on that here. 
 

 
Figure 4: Topological map of the environment corresponding to the RLA network of layer 

two 

1.4 Controllers and Emulators 

Besides model building mechanisms that partially use reinforcement learning to develop competent 
adaptive behavior, control structures and emulators are important part of the MindRACSE project. 
Hereby, controllers are used that generate control signals given current input and current goal 
representation. Such controllers are also often referred to as inverse models. Emulators are used to 
predict the action consequences. They are also often referred to as forward models.  

1.4.1 Emulators and Simulators Proposed by Grush and Barsalou 

Grush (2004) describes a mechanism based on Kalman filters (mainly used in control theory): an 
emulator exploits efferent copies of the control signal for producing a feedback to the system. The 
emulator, running simultaneously with the perception-action cycle of the system, provides 
”expectations in the sense of expected results of the possible actions of the system”; both the input and 
the output of the emulator are in the same format of the representation used by the system to perceive 
and act (ant thus they can be directly compared), as shown in the following picture (from Grush, 
2004). 
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Figure 5 

 
The emulator can also be used even for generating pseudo-proprioceptive information that is at the 
basis of motor imagery; and, assuming that the data produced by the emulator can run even the 
sensory areas, even visual imagery can be produced. 

In a similar spirit Barsalou (1999) described (although he did not implement) the perceptual 
symbol system that is heavily based on the idea of producing modal representations by using 
simulators, that re-enact sensory patterns. Simulators can also produce expectations by running offline: 
“perceptual symbol systems cannot be implemented adequately until it is possible to run simulations 
either in isolation or simultaneously with perception”. 

Recently, the discovery of mirror neurons in neurobiology (Rizzolatti et. al., 1996, Gallese et. al., 
1996, Gallese, Goldman, 1998) has strongly revitalized and influenced all the research about 
“productive” systems such as simulators and emulators, focusing on the strong coupling between 
motor activity and perceptual stimuli. 

1.4.2 Previous Cognitive Control Structures 

Numerous other, related computational models for motor learning and control have been proposed. 
Most of them address specific stages of movement generation, for example trajectory formation 
(Cruse, Steinkühler & Burkamp, 1998; Hirayama, Kawato & Jordan, 1993) or coordinate 
transformation (Salinas & Abbott, 1995). Others are tracking reference signals, relying on IMs and 
feedback controllers (Kalveram, 2004; Kalveram, Schinauer, Beirle, Richter & Jansen-Osmann, 2005; 
Kawato, Furukawa & Suzuki, 1987), which might be combined in a single control structure (Stroeve, 
1996, 1997). Some approaches gate a number of single control structures to be able to quickly adapt to 
changing limb properties (Wolpert & Kawato, 1998; Haruno, Wolpert & Kawato, 2001) or to combine 
motor primitives (Berthier, Singh & Barto, 1992). 

While each model has interesting properties on its own, none can be considered as a truly cognitive 
system. The model of Kawato, Furukawa & Suzuki (1987) contains three different levels but does not 
accept goals in arbitrary modalities. Other controllers (e.g. Cruse, Steinkühler & Burkamp, 1998) 
accept underspecified goals but do not include hierarchical layers. Many models contain neural 
networks that learn by cognitively implausible mechanism like back-propagation. It is intended to 
bridge these drawbacks effectively during the MindRACES project by creating a hierarchical, 
anticipatory cognitive model that is suitable to process any goal representation flexibly and 
hierarchically. 

1.4.3 Hierarchical processing models and controllers 

Many neurological and psychological studies and models suggest that cognitive information is 
processed hierarchically. Powers (1973) already stressed the importance of hierarchies in behavioral 
control and consequent computational models of cognitive systems. Just recently, Poggio and Bizzi 
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(2004) pointed out that hierarchical structures very likely are the key to not only sensory processing 
but also motor control. Available hierarchical models in vision (Riesenhuber & Poggio, 1999; Giese & 
Poggio, 2003) are suggested to be extended to motor control. Hierarchical top-down influences 
showed to have advantageous structuring effects (Rao & Ballard, 1999). 

Computational motor control models showed advantages of hierarchical structures. Considering the 
hierarchy of the musculoskeletal system, the spinal cord, and a controller in the CNS at the top, Loeb 
(1999) demonstrated that the spinal cord is able to counter most perturbations on its own. However, 
the spinal cord also receives task-depending input from the CNS to adjust its behavior. Thus, the 
spinal cord makes the control task easier for the CNS because not every single muscle has to be 
addressed. It is sufficient to set an overall strategy to deal with most perturbations. 

Hierarchical processing models were proposed by Kawato, Furukawa, & Suzuki (1987), who 
applied a hierarchical controller to a robot arm. The lowest level contains a simple PD-controller that 
can in principle handle any task. The controller is not very efficient, because the delayed feedback 
results in a slow control process. A second layer improves performance. As soon as a direct model of 
the plant is learned, it updates the control signal using the expected feedback, which is available much 
faster. However, it is still necessary to adjust the signal iteratively. A third level consists of an inverse 
model (IM) that calculates a control signal for any given goal. When the IM is accurate, the controller 
selects a feasible control signal instantly. In case of a failure, the lower levels induce the (slower and 
less effective) control. The more accurate the models in the higher levels, the more they influence the 
control signals. Since IMs directly determine the action necessary to obtain a desired goal, very 
efficient controllers can be derived (Kawato, Furukawa & Suzuki, 1987).  

Despite the ubiquitous hints on the importance of hierarchical processing and the first model from 
Kawato and colleagues, it remains somewhat unclear why hierarchies are advantageous. One 
advantage may be the general decomposability of our environment due to time and space constrains 
(Simon, 1969; Gibson, 1979). Another advantage may lie in the potential coding invariance in higher 
abstract layers. Clearly, pinpointing and exploiting such properties is yet another challenge for the 
MindRACES project.  

1.4.4 Gradient Inverse Models 

In most of the above models, general action strategies are learned or represented in the controller. It is 
hardly considered what the best learning strategy is when only sparse reinforcement feedback is 
available. While a significant amount of research has been directed towards solving POMDPs 
optimally within discrete action spaces, cases with continuous actions have not been researched to a 
satisfactory extent.  

One promising technique is, among others, neuroevolution, but evolutionary methods have the 
disadvantage that they can become very rapidly harder to solve with the size of the genome. The 
approach of inverse models for reaching sub-goals seems necessary instead. We need inverse models 
that can compute continuous actions that lead to certain sub-goals. One way of directing the learning 
of the controller further could be to use action gradients in recurrent neural networks. In an RNN, we 
want to use action gradients towards desired results instead of just error over simple prediction. 
Desired results could be predicted by a world model-RNN (that is, a forward model), while an action 
producing RNN feeds in actions into this model. Action gradients can be computed across the two 
networks. Action gradients could be computed towards a concrete sub-goal, or towards reward-
maximization as predicted by the model. A similar approach was taken in the work of Jordan and 
Rumelhart (1992) who use a forward model to backpropagate and convert a location (goal-dependent) 
gradient into an action gradient. Schmidhuber and Huber (1991a) used similar ideas backpropagating 
target gradients to generate fovea trajectories. Similar    backpropagation could be useful in converting 
reward gradients into action gradients. 

Actual anticipated sub-goals could be produced by a hierarchical reinforcement learning 
technique, or they could be produced by something like an "optimistic predictor" predicting feasible 
future states with high predicted utility. 
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1.5 Context Sensitive Learners 

Most learning mechanisms above do not distinguish between different (sensory, motor, context, 
abstracted, etc.) inputs. Although several systems have the potential of processing different inputs in 
different ways, usually all systems are pre-wired and mostly fully connected. Inputs are provided in 
the form of an input vector that does not distinguish information. The pre-processing of inputs 
proposed for the PFMs or XCS’s and ACS’s feature-based structuring could be used to evolve more 
abstract features. However, different inputs might have completely different properties. An intuitively 
very appealing distinction is the distinction between sensory input and context information. Context 
information is expected to evolve only once sensory input can be processed in a sufficiently competent 
way. Context information may then be helpful to direct sensory processing as well as action decision 
making towards currently relevant sensory stimuli and other, more abstracted environmental 
properties. 

1.5.1 Context Sensitive Reinforcement Learning 

In many problems, it seems to make sense to divide the input to a (reinforcement) learning system into 
two parts: one that codes for the stimulus and one that codes for the context. Current thinking in 
animal learning theory suggests that the stimulus and the context do not play symmetric roles in 
learning. Initial learning appears to be insensitive to the context, while relearning makes behavior 
increasingly context sensitive. By using an asymmetric learning rule of this kind, a reinforcement 
learning system can be designed that initially generalizes maximally between contexts and later 
restricts the selection of actions to contexts where they are successful. If the stimulus and context are 
selected and represented in an appropriate way for the task, this scheme can lead to very fast learning. 
It also avoids catastrophic forgetting if the context inputs are capable of coding the different learning 
situations. 

These ideas have been applied to Q-learning to develop ContextQ which learns using a context 
sensitive linear approximation system (Balkeniuse, Morén, 2000, Balkenius, Winberg, 2004, Björne, 
Balkenius, 2005). Initial learning operates as an ordinary linear approximator, but relearning invokes 
the context to cancel out inappropriate associations. Apart from making the learned behavior context 
sensitive, the method also limits catastrophic forgetting in cases when the context can accurately 
predict which set of behaviors is appropriate in the different learning instances. Emotional 
reinforcement triggers have been investigated in this context (Morén, 2003, Balkenius, Morén, 2000, 
Balkenius, Björne, 2001).  

1.5.2 Reinforcement Learning in Attention Control 

Balkenius and coworkers have developed a model of attention control based on reinforcement learning 
(Figure 2). The goal of the model is to explain how different learning processes contribute to the 
control of visual attention. There are five main components in the model (Balkenius, Hulth, 1999; 
Balkenius, 2000; Balkenius, 2003). A sensory buffer codes the visual input in different ways. This 
coding ranges from the detection of oriented contrasts to object identity. The sensory buffer also codes 
the visual input using a spatial code that allows attention to be directed toward the location of a 
stimulus. A fixed response system R reacts to the location coding in the sensory buffer to produce 
overt orienting reactions. 

The shift of attention is controlled by two basic learning systems. The stimulus evaluation system 
S* assigns a value to each stimulus based on its reward history and the response evaluation system R* 
assigns values to stimulus-response pairs. Together, the S* and R* systems implement an actor--critic 
(or two-process) architecture for learning (Sutton & Barto, 1998, Mowrer, 1960/1973). The learning 
process in S* is classical conditioning and in R* it is instrumental conditioning. 

In addition, the three modules, S*, R* and R, are influenced by the context system that codes the 
current visual context or situation (Balkenius & Morén, 2000). The inhibitory role of the context 
(Balkenius, 2000, Balkenius & Morén, 2000, Morén, 2002) has been investigated as well as the 
excitatory influences of the context on the response evaluation system R* (Balkenius, 2003, Chun & 
Jiang, 1989, Chun, 2000). 
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The model can produce many attention phenomena including positive and negative priming, and 
anticipatory saccades. The model can also operate both in top-down or bottom-up mode. 
 
 

 
Figure 6 Overview of the Model 

The bases for the model are four principles of attention (Figure 3). (1) Attention to object B is 
inhibited which disengages the focus of attention (attention-as-inhibition). (2) Shifting the attention 
and gaze g from object B to A is an action s (attention-as-action). (3) Object A is selected for the 
action a by directing the focus of attention, and gaze, toward it (selection-for-action). The focus of 
attention is used as an implicit argument for the action. (4) The focus of attention refers to the object B 
without explicitly representing all of its properties (deictic reference). 
 

 
Figure 7 

Although currently limited in its ability to produce actions, the goal of the model is to design a system 
that can control both attention and action in similar ways. Thus, this action-based, contextual learning 
system is highly relevant not only for attention processing in the sensory realm but also in the realm of 
action decision making and action control.   

1.5.3 A Context Processing Model 

The goal of the context processing model first described by Balkenius & Morén (2000) is to build 
codes for the current context based on sequences of sensory stimuli. One way to build the context 
codes is to use an attention mechanism. The current focus of attention acts as the stimulus while 
sequences of attention states make up the context. This implies that the context can be controlled by 
choosing how attention is allocated. 

The initial model used distinct events to build bindings coding for stimuli and place relations, 
which where then combined into context codes. The context in turn was used to form expectations of 
the stimuli that would be present in each environment. These predictions were subsequently used to 
create new bindings when unexpected stimuli where detected. 

In the later development of the model the binding is done using tensor product coding which 
removes the creation of context codes from the behavioral situation. In this model, contexts can still be 
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created when expectations are not met but they can also be constructed passively from sequences of 
input stimuli. 

1.6 The AMBR Model 

The AMBR model (an acronym for Associative Memory-Based Reasoning) is a cognitive model of 
analogy-making based on the Dual cognitive architecture (Kokinov, 1988). A number of predictions 
have been generated with this model and later on confirmed by psychological experiments. 

Dual (Kokinov, 1994) is a general-purpose cognitive. It comprises a unified description of mental 
representation, memory structures, and processing mechanisms. All these aspects of the architecture 
are organized around a small set of principles including (1) emergent computation, (2) micro-level 
hybridism, and (3) dynamics and context-sensitivity.  

All processing and knowledge representation in the architecture is carried out by a cohort of small 
entities called Dual micro-agents. There is no centralized executive that controls the whole system, or 
makes large-scale decisions, allocates resources, resolves conflicts and so on. Instead, small-scale 
Dual agents interact with one another, locally, and the global behavior of the system emerges from the 
self-organizing pattern of these interactions. 

Dual integrates the symbolic and connectionist approaches in a horizontal manner at the level of 
micro-agents, this means that each micro-agent has two parts: the symbolic part of the agent represents 
its knowledge while the connectionist part of the agent represents the current relevance of this piece of 
knowledge. The micro-agents are dualistic in another respect as well: they represent some declarative 
knowledge, but at the same time they are also processing units that act by sending messages, 
activation, etc. and in this way embody some procedural knowledge. 

An important feature of Dual’s operation is that it is constantly changing in response to influences 
from the environment. This is possible due to the emergent nature of the processing that underlies 
Dual’s operation and to the lack of rigid and pre-programmed specification of the computation. In 
particular, there is no sharp boundary between the ‘task’ or the ‘problem’ given to the system to solve, 
and the ‘context’ that accompanies this problem. One and the same problem can be solved in different 
ways during two successive runs of a Dual-based model, in spite of the strictly deterministic character 
of the architecture. 

The AMBR model, based on the Dual principles, integrates memory and reasoning by 
implementing both retrieval of episodes and mapping between the base episode and the target episode 
within a single model. The system exhibits interesting internal dynamics implementing a mechanism 
of state evolution that allows the previous states of the system to influence the specific computation 
that will emerge with given input. In this way the model explains and predicts priming effects. 

Additionally, AMBR is context-sensitive in that changes in the environment that are reflected in 
the input of the system can influence the emerging computations even if they are not directly relevant 
to the task. The model has predicted certain context effects that have been confirmed in psychological 
experiments. Moreover, the system is parallel and interactive in that various subprocesses (like 
retrieval and mapping) run in parallel and influence each other thus allowing complex interactions to 
be explained. 

Current most severe restrictions in the AMBR model are the scalability of the system – the system 
has only been applied to toy problems so far. Moreover, the perceptual abilities so far are all hand-
coded. Also action and control influences were not considered so far. However, the close relation to 
actual cognitive processes and the interesting analogical-based activation spreading and consequent 
reasoning capabilities are worth to by considered further during the project and be potentially 
combined with other learning mechanisms of the project such as the AIS or the XACS architecture as 
well as recurrent NN-based methodologies such as LSTMs or hierarchical models. 

1.7 General Believe Desires Intentions Architectures 

Several computational and logical models of deliberative (intentional) and goal-directed action have 
been proposed. In all those models a goal is considered as an anticipated mental representation of a 
result that is the starting point for selecting the appropriate plan or action for achieving it, guiding 



File Name: D4_1.doc 
Date: 13/07/2005 

22 

planning, guiding performance, stopping the behaviour (see Rosenblueth et al., 1960). It is clear that a 
major aim of this project is to realize these principles within the respective architectures. 

The believe desires intentions (BDI) models of deliberative agents represents yet another, more 
symbolic representation oriented evolution of models of goal-directed systems. The main interest in 
developing BDI models is the characterization of the functional properties of different kinds of mental 
states such as beliefs, desires, goals and intentions and the analysis of their interrelationships. BDI 
models been developed both from a computational perspective (Rao & Georgeff 1991b) and from a 
logical perspective (Cohen & Levesque 1990, Singh & Asher 1993, Meyer et al. 1999). In the BDI 
framework the process of selecting an action for achieving a certain number of goals is modelled as 
well as the way an agent gets committed to execute the selected action (intention formation) and 
persists in having the intention until the time of action execution is achieved. In BDI models several 
strategies of commitment with respect to the selected (intended) action have been implemented (Kinny 
& Georgeff 1991) and computational solutions to the problem of intention reconsideration are 
proposed (Schut et al. 2004). 

BDI models are not anticipatory systems in strict sense. They have not been developed for 
modeling anticipatory mechanisms and functions. But since they represent a rich theoretical and 
computational framework to analyze mental states dynamics of rational agents as well as belief and 
intention formation and revision, they are well suited for studying the properties of anticipatory mental 
states such as predictions and expectations and their relations with intentions and goals. 

A very particular and anticipatory mental construct (well represented in the BDI models) is the 
trust (Castelfranchi and Falcone, 1998a; Falcone and Castelfranchi, 2001) both on other agents and on 
the world. It is the basis for delegating part of its own plan (Castelfranchi and Falcone, 1998b) for 
achieving the final goal to other cognitive or not cognitive agents. In this view any practical action is 
fact a ‘delegation’ to some process in the world: the agent (aware or not) is relying on some 
environmental mediation for producing the aimed result. There are implicit forms of ‘confidence’ in 
the environment (while acting or moving around) and explicit evaluations and expectations (trust), 
including an evaluation of possible dangers and risks. One of the effects of surprise is reducing 
implicit confidence and revising explicit trust. We also predict a relationship between the monitoring 
activity and the level of confidence or trust: the more one is confident the less he will monitor the 
process.  

BDI computational models and BDI logics are well suited to analyze and implement rational and 
deliberative agents with the anticipatory capability to exploit different kinds of sources of information 
(inference, perception, questions to memory) in order to form predictions and expectations; with the 
capability of reasoning with predictions for selecting the best course of action for achieving a certain 
number of goal states and for reconsidering intentions (previously chosen actions and plans) when the 
chosen action is not more expected to be suitable to achieve the goal states. The necessity to integrate 
expectations as an additional mental state type in the BDI framework has already been addressed by 
Miceli & Castelfranchi (2002) and Castelfranchi & Lorini (2003) as well as by Corrêa & Coelho 
(1998) and logics of expectations in the BDI framework have been proposed (Vu Trân et al. 2004). A 
relevant issue concerns the way expectations should be conceived: either as primitive mental states 
with their specific functional properties in the pragmatic reasoning or as compositional mental states 
(formed by goals/intentions and beliefs) whose functional properties are based on the functional 
properties of the components. Once expectations are integrated in a richer model of motivational 
(intentions, desires and goals) and informational states (beliefs and knowledge) dynamics, it becomes 
relevant to model the top-down influence of expectations on the perception process of a rational agent. 
The role of anticipatory mental states in “driving” the execution of knowledge producing action 
(Scherl and Levesque 2003), that are aimed at verifying them, has already been stressed in previous 
research in active perception (Shanahan & Randell 2004; Shanahan 2005). 

2 Taxonomy 

To evaluate and contrast the different systems, we now put the systems into perspective by using 
taxonomies of system properties. A fundamental distinction can be drawn between predictive 
capabilities and anticipatory capabilities. Thus, one part of the taxonomy focuses on predictive 
capabilities and another part focuses on anticipatory capabilities. This section introduces the taxonomy 
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and the questions relevant in the taxonomy for a proper system evaluation. Section 3 then investigates 
system capabilities and potentials with respect to the taxonomy. 

2.1 Predictive Capabilities Taxonomy 

2.1.1 Types of Predictions 

As a first criterion we intend to distinguish which types of predictions each system is able to generate. 
First, it is necessary to distinguish between discrete and continuous predictions. Some systems are 
pure symbolic systems that depend on discrete, symbolic input. Others usually handle real-valued 
inputs or even combinations of either. Moreover, some systems predict (potentially discounted) 
reinforcement values while others predict sensory values.  Besides the predictive input and output 
processing capabilities, it is necessary to specify if the predictive system can predict exact next input 
or if it has multiple levels of predictive abstractions available. Moreover, a distinction can be made 
between systems that are able to predict partial aspects of the successive inputs and systems that 
always predict all successive inputs.  

2.1.2 Quality of Predictions 

Besides the nature of the predictions available, it is necessary to distinguish between different qualities 
of predictions. The most important question in this respect is if the predictions are concrete predictions 
of one next state or if they are able to code a number of potential predictions or a range of predictions. 
Similarly, it is necessary to distinguish systems that are only able to produce deterministic predictions 
with systems that can generate noisy predictions. In relation to this, predictions may be endowed with 
a confidence measure is available. Finally, it needs to be assessed if the system can learn a predictive 
model successfully given an MDP or also a POMDP problem. In the latter case, the system needs to 
learn internal state representations in order to bridge ambiguous inputs.  

2.1.3 Time-Scale of Prediction 

Most systems predict the immediate, next input property. However, there are others that can predict 
long-term dependencies. Again others are able to generate multiple predictions on various levels of 
abstraction in time. For example, a hierarchical predictive system may be able to predict immediate 
next sensory input on the lower level, but may predict the abstract flow of the sensory input on a 
higher level (such as that the flying ball will hit the approaching wall and the consequences thereof).  

2.1.4  Generalization Capabilities 

Yet another highly distinguishing criterion for predictive learners is the capability of generalizing their 
predictions to similar events, sensory inputs, or other regular input properties. Hereby, similar 
situations may be characterized by sensory inputs that have a certain amount of stimuli or stimuli 
properties in common. Similar sequences may be generated by an identical underlying grammar. 
Finally, it needs to be assessed if the systems are able to identify abstract environmental properties or 
generalize to object-oriented predictions ignoring background information and such. 

2.1.5 Incorporation of Context and Action Information 

Although it seems very important for cognitive systems to handle (1) action information and (2) 
context information in different ways than bottom-up, sensory information, only few current predictive 
learners actually induce such distinctions. Thus, it needs to be assessed how the systems handle action 
information and context information. Similarly, reward information may be handled in different ways. 
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Finally, it needs to be clarified how these different types of information are merged, if handled 
separately.  

2.1.6 Focusing Capabilities 

Besides the generalization capabilities with respect to similar inputs, generalization capabilities or 
rather focusing capabilities are also highly important for the generation of predictions. For example, it 
might be very easy to predict certain parts of a visual scene (for example, constancy) but much more 
difficult to predict other parts in the scene (for example, a moving object or agent or the somewhat 
random patterns of the leaves of a tree on a windy day). Thus, a predictive system should be able to 
ignore or generate noisy predictions for inputs that are hard to predict whereas concrete, near exact 
predictions for other parts that are predictable easily. Systems will be evaluated on their capabilities of 
ignoring irrelevant or distracting inputs. Moreover, they will be evaluated if predictions can be 
generated for parts of inputs only – either spatially or in a more object-related or property-related 
fashion. 

2.1.7 Internal State Predictions 

Besides the predictions of inputs, it might be highly advantageous to be able to predict own internal 
states. More importantly, future behavior and future relevancies may give advantages when evaluated 
for anticipatory behavior. Also, it might be advantageous to predict future motivational and emotional 
states to be able to exploit opportunities and avoid upcoming disasters.  

2.2 Anticipatory Capabilities Taxonomy 

Once the predictive capabilities are assessed, we evaluate the anticipatory capabilities of the systems. 
Essentially, we are interested which mechanisms may exploit which predictive capabilities in which 
ways. We distinguish the following anticipatory capabilities. 

2.2.1 Learning Influences 

Predictions may be used to improve learning of predictions and behavior itself. We may distinguish 
(1) indirect learning influences, (2) direct model learning influences, and (3) direct behavior learning 
influences. In the first case, predictions may shape internal learning structures in certain ways that may 
be advantageous for future learning. In the second case, model learning may be improved by focusing 
learning, ignoring irrelevant or unpredictable inputs, delegate learning responsibilities more 
effectively, estimate feedback reliability, and bias learning to explain unexpected events. Finally, the 
predictive model may be used directly to structure behavioral patterns offline or use it as a planning 
mechanism. 

2.2.2 Attention Influences 

Since attention is more the responsibility of workpackage three and deliverable D3.1, attention will be 
not considered in as much detail as the other points in the taxonomy. However, it will become clear 
that attention is most likely not only relevant for directing sensory processing but also very relevant to 
controlling action decision making. Recent publications even suggest that basically the same 
mechanisms can produce either effect (Poggio, Bizzi, 2004).  We will evaluate the systems with 
respect to their capabilities to use the predictions to bias their sensory processing, use context to 
facilitate such processing, and predispose processing taking internal emotions, motivations, or internal 
goals into account.  
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2.2.3 Action Initiation and Control Influences 

Much more relevant for this deliverable are the potentials of using the predictive capabilities to 
improve action initiation and control. Hereby, we intend to distinguish between inverse modeling 
capabilities, that is, if the system is able to directly trigger actions or motor programs given current 
sensory input and current goal representations. Next, we are interested in the capabilities of action 
control influences in that sensory feedback might be combined with predicted sensory states to 
produce optimal resulting control signals. Moreover, the differences between predicted and actually 
occurring sensory feedback may be used to induce more effective stabilization strategies via behavior 
adjustments.  

2.2.4 Action Decision Influences 

Finally, action decisions will be influence by the predictive capabilities of the system. Note that we 
refer to influences that do not only predict simple reward values by e.g. model-free reinforcement 
learning (Sutton, Barto, 1998) but rather refer to actual input predictions that are used for an effective 
action selection. Clearly, the most obvious anticipatory action decision making influence is that of 
planning systems. General planners, however, are of minor relevancy to our project, since general 
planning is exponential in time so that general plans are not very helpful.  More important is the 
prediction of potentially partial future aspects and the capability of adjusting behavior according to 
these predictions. Second, motivational influences need to be assessed. Hereby, utility information 
might be merged with predictions to be able to generate opportunistic behavior, shape action 
preparations, and predispose action decision making. Essentially, motivations may be linked to certain 
environmental properties. The activation of these properties may then induce the activation of action 
patterns that may lead to such properties and consequently bias action decision making towards 
executing actions that lead to such properties.  

Finally, the systems may be able to use currently available knowledge of their environment and 
current goals not only to achieve the goal itself but also to induce epistemic, pro-active actions that are 
aimed at gaining information from the environment. Such behavior is typical for any search scenario 
in which the agent perceives only partial information about its environment and needs to execute 
action to gain further, currently hidden information (such as moving a magazine to see if the searched 
key is located under it). Similarly but more generally, curious behavior may be induced in the general 
search for, for example, food but also for general knowledge gain – which can result in learning 
improvements.  

To be more precise, such curiosity-based actions are actions intended for gaining information, 
namely actions of which we assume that they lead to a better understanding of the world; more 
precisely, anticipation of information gain. When implementing curiosity, we consequently need to 
design a scheme where actions are selected that lead to an optimal information gain, i.e. actions of 
which we expect the results to best improve our own predictor. We should therefore not concentrate 
on just trying to improve our predictions of extremely noisy events but instead on actions that really 
improve our predictions. 

3 Predictive and Anticipatory Capabilities of Relevant Systems 

The project-relevant systems introduced in Section 1 are now evaluated using the taxonomy. After 
considering each system separately, the next section then contrasts the different system capabilities 
identifying many possible system combinations and enhancements highly promising and project 
relevant. 

3.1 The Alvinn System 

Although the Alvinn system can be considered more a principle than a particular system, its predictive 
capabilities and anticipatory capabilities suggest a baseline of the minimal amount of anticipation the 
project is interested in.  
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3.1.1 Predictive Capabilities 

Two types of predictions are generated in the Alvinn system: the observations at the next time step, 
and the action-prediction of what the teacher-human would have done in the same case. 

The current system is predicting exact actions but could certainly also be used to learn probability 
distribution over possible actions instead. Moreover, it predicts the next observation. Also for 
predicting the observations we could easily imagine producing probability distributions instead of 
simple predictions per se, which have higher information content. 

Predictions are currently restricted to one-step predictions. Of course, chaining is possible, though. 
This would have to be researched in detail. However, since Alvinn is a simple NN, it should have 

the typical NN generalization properties. 
The focusing capabilities are error-function dependent. The gradient-descent focuses on 

minimizing the error, so it really tries to predict exactly what the human would have done. 
Unfortunately, it will also try to predict exactly the next observation, which might not be possible. So 
some inefficiency might arise as a result of that. Use of probability distributions as outputs might help 
alleviate this problem. 

3.1.2 Anticipatory Capabilities 

This method uses the prediction of the next step as information to shape the same network that 
produces actions. This is a form of indirect predictive learning, where the predictivity "shapes" the 
internal structures for learning the right actions. 

Although the process of the production of actions tries to ignore irrelevant inputs, the anticipatory 
predictions try to predict all predictable observations. The predictive system therefore does not focus. 
This remains a matter of future research. There is, in the anticipatory part, no selective attention; there 
are no subgoals except implicitly as learned by the RNN. 

As we have seen, control is generated by an RNN that is taught by supervised gradient descent. 
The method does not utilize any more complicated goal generation or inverse modeling mechanisms. 

Behavior is (indirectly) adjusted according to predicted external states. Although there are no 
explicit internal goals, back-propagation of action-error makes the system pro-active, while 
unexpected events produce new neural configurations that lead to other actions that are (hopefully) 
more appropriate in the new situation. 

The main lessons learned from the Alvinn system show that it is interesting to learn (internal) 
representations that are used both (1) for proper predictions of next states and (2) for a proper 
generation of next actions. Thus, goal-directed behavior may be learned easier, if the internal 
structures are not only used for learning predictions but also for generating action decisions. Degrees 
of such advantageous will be assessed throughout the remainder of this project.  

3.2 The XCS System 

3.2.1 Predictive Capabilities 

XCS is a very general predictive learning mechanism, which can handle discrete as well as continuous 
predictions, can predict reward as well as sensory inputs or sensory changes, is highly noise tolerant 
and does not rely on determinism. The implementation of predicting sensory changes or successive 
sensory inputs still awaits successful implementation and application. The only restriction is that XCS 
was applied only to very restricted POMDP problems so far. The evolution of inner states seems quite 
complicated and awaits further research. Most probably, heuristic methods for an inner state 
representation are necessary to apply XCS successfully to complex POMDP problems. 

XCS essentially generates fuzzy predictions with a confidence interval. Usually, reward values are 
predicted but this is not restricted as mentioned above. Currently, XCS is a flat architecture but 
combinations of multiple XCSs in a hierarchical fashion are under investigation. Any prediction in 
XCS always has a confidence measure attached to it. An XCS module predicts usually one aspect. 
Multiple modules may be used to predict multiple aspects or modalities. Object-oriented predictions 
remain to be investigated. XCS’s learning in Binary classification problems is polynomial in the 
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number of input attributes with an order of the polynomial of the size maximally of the size of the 
number of relevant attributes (in the extreme case of a very symmetric problem, such as an XOR 
problem) but usually linear in the number of input attributes. Given fitness guidance (which is present 
in most problems), XCS is linear in the number of attributes irrelevant for accurate predictions. 

Currently XCS is flat – combinations of multiple XCSs on multiple time-scales are under 
investigation (Butz, 2004b). 

XCS is a strongly generalizing system that ignores irrelevant attributes and identifies attributes (or 
activities) relevant for an accurate prediction reliably. The capability of using different condition 
structures also enables different types of generalizations. Sequential learning needs to be investigated 
further since inner states were not integrated successfully in XCS so far. 

Focusing capabilities are possible but have not been further investigated so far. Niching 
techniques and importance-based learning mechanisms can clearly be incorporated by tuning the GA 
application as well as the inherent accuracy threshold. Distracting attributes are already now 
effectively ignored.  

Actions are currently only discretely includable in XCS classifiers. Alternatively, actions may be 
coded as part of the condition input. However, in this case, action choice is not straight-forward any 
longer. Motor programs may be included coding them either discretely in advance or in an hierarchical 
structure over time as proposed in Butz (2004b). Predictive clues are currently handled identically. 
However, the condition representation of classifiers allows the incorporation of many diverse 
structuring tools (such as different basis structures) for different sensory inputs and potentially internal 
state information. All these issues strongly depend on the design and connectivity (that is, which 
inputs are handled in what way) of the XCS system.  

Finally, the modular and hierarchical combination of the XCS system awaits the successful design 
and implementation.  

3.2.2 Anticipatory capabilities 

Anticipatory learning influences have not been investigated in XCS so far. 
Attention processing has not been investigated any further in XCS but may clearly be included in 

many ways. Predictions have confidence values so that predictions with low confidence may be 
processed in further detail. Additionally, the modularization is possible in that different XCS modules 
may predict different aspects. Another module that determines task-relevancy could be used to 
determine which XCS modules are currently used for prediction generation. 

XCS could be used as an inverse model but has not been so far. Predictions could be combined in 
a Kalman-filtering fashion and predictive control would be possible similarly but awaits research. 
Direct faster control or stabilization mechanisms may be more difficult to implement but could be 
realized by prioritizing classifier processing in XCS. 

Curious behavioral mechanisms showed to improve XCS’s learning capabilities in MDP 
problems. Other direct behavioral influences await future investigations and require the combination 
of several XCS modules or XCS modules with other learning modules such as motivational modules. 
One approach is outlined below for the XACS system. 

In sum, XCS has strong potentials as a predictive learning system with anticipatory capabilities. 
Due to its flexibility in representation and potential application, it might serve as a predictive learning 
module in many circumstances and in different architectures and combinations with other learning 
modules. 

3.3 The Prediction Fractal Machine  

3.3.1 Predictive Capabilities 

The PFM is a purely symbolic system that learns sequences of symbols and can use these symbols for 
predictions. Hereby, the system partially relies on determinism. The dependency can be alleviated by 
an effective discretization of the input stream and thus strongly depends on the input pre-processing.  
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The system is able to generate fuzzy predictions on multiple levels of abstraction. Confidence 
values for the predictions are available. Moreover, partial future aspects may be predicted dependent 
on the discretization mechanisms used and the number of sequential similarities.  

With respect to time scales, the system can be used to predict several steps in advance but in its 
current state, it cannot bridge states predicting for example, the next significant event. In this sense, 
long term predictions are not available but can only be generated iteratively. However, the system has 
a clear potential of forming hierarchies, clustering similar sequence structures and thus generating 
higher level sequential pattern predictions. 

Generalization capabilities are strong when similar sequences occur. Dependencies are detected 
fast in this sense, if sub-sequences are expected to have identical symbolic structures. Thus, also 
grammars are essentially learnable dependent on the pre-processing mechanism used and how pre-
processing depends on sequence learning. Dependent on the discretizations used, abstract 
environmental properties can be generalized upon. 

Also the incorporation of action information and context information depends on the pre-
processing mechanism. In general, though, any input is handled identical in the current system and 
thus no distinctions are employed between different actions and sensory inputs. 

Focusing mechanisms are currently not used and the system essentially tries to predict all 
sequence information available. 

The system can predict future sensory patterns but also behavioral patterns dependent on the used 
coding. Thus, the system is able to predict its own future behavior. Finally, it is planned to incorporate 
motivational and possible emotional modules using multiple PFMs.  

3.3.2 Anticipatory capabilities 

Actual anticipatory capabilities have not been investigated so far in PFMs. However, we expect that 
the fractal-based structural shaping may also be helpful for action generation mechanisms. The model 
has the clear capability of improving behavior control programs offline executing hypothetical actions.  

Attentional influences may cover all relevant points but requires more detailed investigations. It 
seems hard to allocate and delegate learning responsibilities in the current PFM architecture. However, 
if multiple PFMs are used, then a responsibility delegating module may come in handy. 

Clearly, this is not an inverse model type. However, action control influences may be possible 
combining predicted with actual feedback information. Faster control, stabilization and behavioral 
adjustment may be a consequence of such processing mechanisms. 

Finally, the system has clear planning capabilities potentially modifying the action decision 
system. Utility and predictions may be merged and action may be pre-disposed. 

Similar to the XCS system, the PFM is a predictive system that is currently used to learn good 
state predictions and predictive sequences matching up sub-sequences. The strength of the system lies 
in its effective sequential representation and its generalization capabilities with respect to sub-
sequences. The continuation of the project will show how many of these capabilities can be effectively 
used for anticipatory mechanisms as outlined above.  

3.4 The Long Short Term Memory  

3.4.1 Predictive Capabilities 

The LSTM system is a multi-purpose predictive system with the ability to handle continuous inputs 
and outputs. It could be used for sensory prediction, but also for utility prediction (as has been done 
for reinforcement learning purposes), among other things. 

With respect to the exactness of predictions, LSTM can be used in multiple ways. Since the 
system essentially is an RNN, standard methods from RNN literature can be used, such as error 
functions that allow us to output probability distributions instead of pure predictions per se, or 
methods to control regularization. 
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The method has the capability to capture long-term time dependencies, but in order to predict 
events far in the future or in order to predict future abstract states, we probably need to combine this 
method with hierarchical approaches. 

The generalization capabilities of the systems show very strong capabilities especially with respect 
to generalizations in time and in grammatical structure. Many experiments, among others speech 
processing and learning grammars, showed that the system generalizes very well. 

The capabilities of including action influences are shown in an application in a reinforcement 
learning setting, where each output estimates a Q-value for a particular action. This would be the 
simplest way to encode actions. However, a more interesting goal would be to let outputs encode 
continuous actions, using gradients to estimate how action changes would influence future discounted 
reward in a model of the world. Capability of including / incorporating / merging other predictive 
clues will have to be researched.  

Just like it is the case with other RNNs, if one uses a proper error function, LSTM networks can 
ignore irrelevant inputs effectively. However, focusing capabilities are somewhat limited and future 
research is necessary to assess if the networks can be structured in such a way to generate object-
oriented focusing mechanisms or property-based focusing mechanisms. In this case, again, 
hierarchical and further modular structures seem inevitable. 

Finally, while capability of predicting future internal states, behavior, or internal relevancies have 
not been investigated so far, it seems plausible that LSTM nets can and should be used for future 
internal state prediction. Especially long-term dependencies can be expected to be detected rather 
easily compared to other RNN approaches.  

3.4.2 Anticipatory Capabilities 

LSTM nets are another predictive system that can be used to investigate the shaping of internal 
structures via backpropagation. Recently, a new method, called Evolino, was developed that learns 
LSTM weights by using evolutionary methods. This method can overcome some difficulties that arise 
in gradient-descent methods due to local minima. Explicit model learning or behavioral learning 
influences, however, have not been investigated so far, except for the capability of ignoring irrelevant 
inputs using effective Kalman-filter based update techniques. 

Although attentional mechanisms have not been investigated in detail, the LSTM network is a 
usual (R)NN. Thus, irrelevancies can be addressed by the use of a proper error function. A wide range 
of standard (R)NN techniques can apply here. 

Similar to the other predictive learners, LSTM could be used as a tool in action-gradient-based 
inverse modeling techniques, or used for the supervised learning of policies. The possibility to 
compute gradients offers many opportunities for such methods, but we need to research especially 
those algorithms that function in cases where no teacher information is available, only reinforcements. 

While LSTM networks have not been used to influence action decision making, it seems clear that 
the strong predictive capabilities will also be relevant for anticipatory decision making. Sufficient 
information is available to trigger curious behavior, potentially epistemic actions as well as merge the 
predictive information with utility information or motivations.  

3.5 Top-Down, Bottom-Up Predictive Systems 

Also the last predictive system has its current strength in its predictive capabilities. The anticipatory 
capabilities will have to be assessed in detail throughout the project.  

3.5.1 Predictive Capabilities 

Although this system features continuous predictions, the hierarchical structure enables some form of 
discretization. For example, Boden (2004) discretizes the internal state of the lower-level network 
according to prototype vectors before feed-forwarding it to the next level. A more sophisticated 
approach, where discretization is achieved by, for example, a gate-based structure like LSTM has, 
seems more general than this approach. 
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Rao and Ballard (1997) present a probabilistic system. Hierarchical structures should be able not 
only to predict one possible next state, but a probability distribution over next possible states. Using 
RNNs, we can use extensions of standard adaptations of the error function in order to achieve this. 

The hierarchical top-down, bottom-up interactions could enable the architecture to operate on 
multiple time scales, for example, lower levels may feedforward their activation to the next level when 
there is significant change in its state, or when it fails to predict the next state, or when there is 
currently high entropy in its state. This way, different levels operate on different time scales and 
higher levels may predict states or state transitions many steps in the future.  

Hierarchies can achieve a form of abstraction and generalization. Although this is less general than 
simply using bigger networks (since we are constraining the architecture), the probability of finding 
appropriate representations might be higher – a promising aspect of the future research taken on these 
networks. Essentially, it is expected – as often claimed before – that hierarchically, decomposed 
structures are ubiquitous in our environment (Simons, 1969; Gibson, 1979). Since our project is 
concerned with embodied, cognitive systems – as long as sensory representations are chosen wisely – 
the typical structural constraints in the environment should carry over to the internal hierarchical 
structural predispositions. 

Currently these networks do not incorporate action influences. However, Poggio and Bizzi (2004) 
propose an approach in this direction, suggesting forming hierarchies for the action pathway. Context 
information is already included in the top-down information stream. Other connections may be added 
with similar properties. Most recently, Grimes and Rao (2005) show an interesting enhancement of the 
network with respect to forward predictions.  

With respect to focusing, higher level layers focus on different aspects of the prediction than the 
lower levels. The lower level predictable properties of observations are mostly ignored by higher 
levels. Moreover, modularity and connectivity in each layer may enhance the focusing capabilities 
induced from higher layers to lower layers further. 

Finally, the system is continuously predicting changes in its own internal states – top-down 
influence predicts and predisposes lower level activity. If and in what way other types of internal 
states – such as motivational states – might be represented and predicted remains for future research 
investigations.  

3.5.2 Anticipatory Capabilities 

Anticipating its internal state at the next time step, higher level layers may start to influence lower 
level layers to enhance their modeling capabilities. Combine actions using an estimation of prediction 
confidences at several levels, should shape the system such that it can handle more complex abstract 
representations than a single-level system could have handled. 

Higher levels focus their „attention“ on those predictions that the lower levels cannot handle 
themselves. In a different aspect, attention may actually be induced in the system by increasing the 
top-down activity predisposing the lower lever activities in certain ways.  

It is hoped that action influences and control may be accomplished similarly to the sensory 
processing pathway learning action gradients. Attention would then not only predispose sensory 
processing but would similarly incur action control. 

Similar to other predictive systems, the hierarchical system may be used to modify and influence 
action decisions. Similar to the attention mechanism on sensory processing and control, action 
decision mechanisms may be influenced. However, to accomplish this, sensory processing and action 
control need to be coupled effectively – maybe the greatest challenge for the MindRACES project. 

3.6 Schema Mechanisms 

3.6.1 Predictive Capabilities 

The original SM accommodates only binary-valued sensors; but recently it has been extended to 
continuous values. It has also no parameters: each schema is unique (this poses many scalability 
problems). It can learn in POMDP environments, as shown in Holmes and Isbell (2005). It focuses on 
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sensory rather than reward predictions. Schemas can perform discrete predictions; some components 
of Roy’s schemas are also analogical. They focus on sensory rather than reward prediction. 

Schemata focus on sensory rather than reward prediction. A schema also has no parameters: each 
schema is unique (this poses many scalability problems). It was recently also shown, that schemata 
can be learned in POMDP environments (Holmes and Isbell, 2005). Schemas can perform exact 
sensory prediction; in principle there can be more abstract predictions (e.g. by using hierarchies of 
schemas), but this use is not jet explored. 

Normally schemas predict only the next step; however, hierarchies of schemas could scale up to 
long-term predictions – a promising direction for future research in the project. 

The SM is able to generalize and to build synthetic objects. Schemas should generalize quite 
naturally as also seen in the XACS mechanism and the predictive fractal machine. Roy focuses on the 
capability of representing e.g. objects in terms of their affordances. 

Schemas include perceptual and motor elements. For example, in the work of Arbib there are 
actually always two coupled schemas, a perceptual and a motor one. This includes also continuous 
actions. The main biases seem to be the goal context. In principle, schemas can accommodate other 
predictive clues, but this capability is not jet explored. 

Except in the recent successful application to POMDP problems, predictions of internal states are 
not considered explicitly. However, the predictions lead to other activation triggers which can be 
considered as predictions of states of other internal modules. Thus, the internal activity, especially in 
Roy’s model, is highly interactive and modular, continuously predicting states of other internal 
modules. 

3.6.2 Anticipatory Capabilities 

The learning mechanism is based on marginal attribution that estimates the reliability of some results 
after an action versus without this action. In the work of Roy, many parameters are learned, but the 
general structure of the schemas (e.g. object or event schemas) remains the same. Thus, the different 
modules do not learn interactively so that predictive capabilities are not employed to shape learning in 
another module. Rather, modules are trained, if at all, in a stand alone fashion (like a controller) and 
then are hooked together appropriately. 

The essence of an SM is to perform active perception considering only those sensory aspects 
relevant for its activation. The sensory and goal context is used to activate some schemas, but many 
mechanisms exist for their selection 

The SM can associate goal states to chains of actions that are believe to accomplish these goals. 
Drives and Goals can activate appropriate schemata. Depending on the action selection policy, there 
can be arbitration, selection, merging, superimposition, etc. There is also an online control phase using 
the anticipatory elements of the schemas to induce active control. 

The SM is driven by goal states and has not special mechanisms for surprise, curiosity, etc. 
However, schemas can be used both for planning and online action control. At the moment the goal 
influences are not fully explored and mainly limited to direct action selection and triggering. 

3.7 Neural Network-Based DYNA-Like Systems 

The DYNA architecture (Sutton, 1990), and its correlated NN-based approaches (Baldassarre, 2001, 
2003) taken up by the partners, reveal strong predictive and anticipatory capabilities.   

3.7.1 Predictive Capabilities 

Whereas the original DYNA architecture is a tabular lookup system that operates on discrete symbolic 
input, the NN-based architecture is a continuous predictive system that predicts feature-like sensory 
inputs. Both systems have problems with POMDP as all standard RL systems. 

Both systems can use stochastic predictions and act in stochastic worlds, but the forward models 
of the architectures proposed so far produce deterministic predictions. In the case of the NN planner, 
as in all NN methods, confidence values and fuzzy predictions can be employed by using an 
appropriate error function and related weight update mechanisms. 
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Both, Sutton's original DYNA architecture as well as the NN-based versions represent concrete 
predictions in terms of sensorial input. Currently the system architectures are flat enabling only 
immediate predictions (but see Baldassarre, 2003, for a preliminary investigation of a NN planner 
whose predictions span two to ten times ahead). Chaining of predictions is of course possible. 

While there was no generalization in the original tabular system, the NN-based systems can 
generalize to similar events and similar sequences but they have neither object-oriented 
representations (no clustering and such) nor any type of grammar representation (no recurrence).  

Actions are represented in a discrete number and are used to select expert forward models 
dedicated to them. If continuous actions should be included, then actions should be considered as an 
additional input, which however would make the planning capabilities much harder. Single actions 
(e.g. a displacement of a given measure towards north) need to be executed by servo-motor-programs. 
There were no investigations so far of including other context-based information. 

Within the context of original DYNA architectures, forward models have been mainly used, as a 
memory of past experience, to carry out extra training so as to speed up learning of specific external 
reward-related tasks (e.g. Lin, 1992). Instead, the NN planner generates reward internally in 
correspondence to (externally or internally generated) goals by means of a specific module. This 
module generates the internal reward by comparing experienced or "imagined" states with pursued 
goals. Indeed, while DYNA learns to predict rewards associated to specific tasks (specific states), the 
NN planner can self-generate internal reward, which is associates with any possible state that the 
system might happen to pursue as a goal. 

During planning, the NN planner focuses on states that lie between the starting position and the 
goal, and those around them. However, the system does not focus on partial aspects of the sensory 
information. 

In both original DYNA and NN planners, when in planning mode the actor is a model of itself 
acting in reality. In this sense, the system actually predicts its own choices in states potentially 
experienced in the future. 

3.7.2 Anticipatory Capabilities 

While the DYNA system is a very simple planning system that only plans (potentially stochastically 
distributed) concrete next states, the NN-based systems plan on predictable states. Unpredictable 
things are automatically not predicted. However, partial predictions are currently not possible. 
Planning is quite robust in the sense that it involves all states that might likely be visited during action 
execution. Planning takes place precisely as an offline improvement of the control policy in relation to 
the assigned goal. 

There are no attention influences except for the planning part mentioned above. 
With respect to action initiation, the system learns to associate goals with actions once a planning 

step has been applied successfully. In this case, goals trigger actions / motor (control) programs 
especially in the multi-goal version of the system when same goals are assigned more than one time. 
The planning process “compiles” goal-related information into the reactive components of the system. 

Action decision is influenced in a planning manner in that hypotheses are generated looking ahead 
and distributing reward and assigning maximally effective actions to NN-based states. Goals can 
become motivations in the multi-goal version of the planner. Epistemic actions were not investigated 
so far. Curious behavior can be included easily by directing the behavior during exploration to NN 
regions in which the predictions have high uncertainty. 

3.8 ACS2 / XACS 

As the NN-based DYNA approach, XACS is a DYNA-based system. The system learns a predictive 
world model as well as behavioral policy. The flexibility of the XACS architecture may prove very 
useful for the MindRACES project.  
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3.8.1 Predictive Capabilities 

The XACS is currently a purely discrete, symbolic learner that was applied to n-nary alphabets (where 
n is a small number). It combined model and RL learning to learn sensory predictions and reward 
predictions, for which the sensory predictions are used. The sensory predictive module relies on 
determinism in the environment but can ignore irrelevant, fluctuating attributes. The reward learning 
part is rather noise robust as several more recent studies on XCS have shown (Butz, Kovacs, Lanzi, 
Wilson, 2004; Butz, Goldberg, Tharakunnel, 2003). Currently, the predictive learning capabilities are 
restricted to MDP problems, since no internal states are used. 

XACS comprises concrete predictions but also provides a certainty of its predictions for state 
predictions as well as for corresponding state value predictions. The predictions are generalized in that 
irrelevant attributes can be ignored. The predictive model is usually significantly smaller than a 
completely specified model. Currently, the architecture is flat without hierarchies. Irrelevant attributes 
are ignored and can be explicitly identified as irrelevant for accurate predictions or as unpredictable.  

The experimental evaluations showed that the system can ignore irrelevant attributes and, in this 
case, beats learners that learn a tabular problem representation. The predictive models are always 
generalized and are usually much more compact than tabular approaches. The comparisons to learning 
results of XCS suggest that ACS2 can PAC-learn k-DNF problems as XCS can.  

There are no hierarchies and predictions are currently on one time scale only. However, predictive 
chains can be generated so that longer term predictions are possible in a limited sense.  

The generalization mechanisms in ACS2 and XCS showed to be able to focus on the attributes 
that are relevant for accurate predictions of the next sensory inputs and the consequent reward, 
respectively. Thus, regularities are detected and object clusters are expected to be identifiable by the 
mechanisms. Sequence learning capabilities and POMDP problem types in which internal states need 
to be maintained were not investigated with XACS so far. 

Actions are directly included in the classifier structure which forces the usage of discrete action 
codes. More sophisticated actions or hierarchical, option-type action structures or motor programs 
were not investigated so far. Merging of sensory/reward and predictive information were not 
investigated so far. Contextual information was not handled so far (or treated separately from pure 
sensory inputs). 

Distracting stimuli can be ignored as mentioned in the system description. Also the behavioral 
policy can be improved to cause curious (improving model and policy learning) as well as greedy 
behavioral patterns (improving and speeding-up policy learning). Focusing capabilities that explicitly 
ignore sensory aspects in a goal-oriented fashion were not investigated so far. 

The system has no internal states and thus was not tested on predicting internal properties (except 
for the prediction of reward triggers). 

3.8.2 Anticipatory Capabilities 

Anticipatory learning influences are used in that the comparison of predictive and resulting sensory 
inputs is combined to shape internal structures and to derive fitness for the evolutionary generalization 
component. The ACS2 system combines heuristics and genetic generalization to gain the best out of 
heuristic machine learning principles and genetic mechanisms.  

Behavior is directly influenced and improved by the learned model so that DYNA principles are 
applied. A list of currently least accurate predictions combined in a priority list, similar to the work 
done by Moore and Atkeson (1993) in their prioritized sweeping mechanism, showed to improve 
behavioral learning even further. 

Attention is not directly implemented but realized in the classifier structure in that generalized 
attributes are irrelevant for prediction and are effectively ignored. Context information is not used to 
improve attention or sensory input processing. Also motivations and similar things are not included 
but may be used to prioritize the generation of predictions, possibly mediated by the XCS-based 
reinforcement module.  

Goals can trigger actions, possibly mediated by the XCS-based RL module. However, these 
capabilities were not investigated further so far and the current XACS system was only tested on 
problems starting from the sensory input. Kalman-filtering mechanisms were not investigated so far. 
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The current XACS system relies on discrete inputs so that fuzzy inputs cannot be handled with the 
current system. 

XACS uses its predictions for behavioral decisions. Currently only one RL module was 
implemented but different RL modules for different motivations are easily interpretable and 
combinable in the XACS framework. Thus, the system has strong potentials to study multiple 
motivational influences and emotional integrations. Utility and predictions consequently can be 
combined to yield opportunistic behavior. Curious behavior is implemented in the system. However, 
epistemic actions and pro-activity are currently out of reach because no internal states were used so 
far.  

In sum, the XACS system has a lot of potential for the project but may be combined with other 
learning mechanisms and the modules in XACS may be substituted by other modules (such as the 
ACS2 module by another, sensory-predictive XCS-based module), which may be more noise robust or 
may also be able to handle POMDP problems. 

3.9 Artificial Immune Systems 

As a schema-based mechanism, the system seems to have significant potentials for effective 
anticipatory mechanisms for decision making, goal-directed behavior, and control.  

3.9.1 Predictive Taxonomy 

The RLA-network on the first layer captures basic “how-to” knowledge, works with rewards (internal 
reward, by reinforcement learning) and by external reward, given by the system, if expectations of 
sensory predictions occurs.  

The AIS-system is using a queue of the recent sensor history. Taking a moving average of the 
sensory data is a useful way of reducing or canceling the effects of noise and error and can provide a 
form of short-term memory. The past data is summarized by maintaining a short, fixed-length queue 
of sensor values, and calculating the mean of the last few sets of sensor values. The process continues 
by advancing one time step and calculating the mean of the next few sets of sensor values, dropping 
the first set of sensor values. A moving average history length of 5 sets was in the version 
implemented on the KURT2 robot found to give fairly good results (Rattenberger et al. 2004); large 
history lengths (8 or above) caused the moving average values to change too slowly to be of much use, 
while very small history lengths (3 or less) were not so effective at smoothing sensor noise and error. 
The contents of the queue provide raw material from which candidate RLAs can be built. A moving 
average history of 5 time steps was seen to give good results. 

On higher levels, the AIS will also support object-oriented and/or spatial focusing capabilities. As 
soon as the concept of a “ball” (e.g. the pink AIBO ball) has been formed, by interacting with it, the 
activation of the according concept on the second level could trigger object-oriented focusing 
capabilities, by generating a hypothesis, that the object appearing and interacting with is already 
known.  

The introduced architecture follows the principles according to interactivism. Action codes will 
not simply be included as an additional input, but will constitute a special status in the predictive 
architecture.  

3.9.2 Anticipatory Capabilities 

When determining robot behavior on the first level of the RLA-architecture, a hypothesis is made by 
choosing an antibody, fitting the current sensory situation and executing the action, represented by that 
antibody. After executing the antibody (which is not restricted to one time step), the antibody is being 
evaluated for accuracy. Therefore it is being determined if the paratope (expected sensory outcome) of 
the previously chosen antibody was accurate, by comparing the degree of matching between the 
current antigen and the paratope of the previously selected antibody. If the accuracy is satisfying, then 
the paratope of the previous antibody was regarded to be an accurate prediction of the next sensory 
condition. In addition to checking the accuracy of the outcome a number of factors are also considered 
in determining whether the antibody should receive positive reinforcement. This is done mainly by 
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giving reinforcement according to the accuracy of the performed behavior considering the robots 
current motivation. 

On higher AIS network levels, concepts will be formed (e.g. the concept of a ball). Once such 
concepts are formed, hypothesis will be formed when interacting with the environment about the 
nature of an object the robot starts interacting with. The agent might then reach a purely action-based 
perception starting from an experience-based perception model. Predicted inputs will be filtered and 
unexpected inputs will then be processed further in detail. 

Once the robot evolves, higher behaviors will take over the initially instinct-driven behaviors. This 
also leads to selective attention, when for example the robot’s task is to or to seek a ball - anticipating 
it behind a wall. When approaching an location where the ball is expected, all pink objects will 
primarily focus the agent’s attention. 

Individually, connections between RLAs can express a temporal association between RLAs. A 
strong positive connection between two antibodies x and y means that if RLA x fits the current 
situation then RLA y is a possible candidate to describe a subsequent situation (this applies for all 
layers in the hierarchy). Thus they can capture some aspects of episodic memory. Strongly connected 
paths in the network represent a history of robot actions i.e. an episodic memory. This selectively 
improves processing as for already known (and thus predicted) situations, less processing is necessary, 
until unexpected input arrives. Bandura describes this as follows: “If one had to think before carrying 
out every routine activity, it would consume most of one’s attention and create a monotonously dull 
inner life.  Efficient functioning requires a mix of routinized and mindful action”. (Bandura 1999). A 
well known example from daily life is the escalator. When approaching a deactivated escalator we 
often experience some bafflement before switching from routine to full attention and mindful actions. 

Action initiation and control influences may be incorporated in several ways. Briefly summarized, 
the virtual antigen would allow the agent to associate goals with actions, by processing the antigen and 
generating a sequence of antibodies, leading to the successful handling. 

RLAs code (at least on the first hierarchy level) for an environmental situation C, the action A to 
be performed and an expectation E what will happen after executing action A under condition C 
providing feedback whether the expectation and the performed action (depending on the 
motivation/goal/task) were viable.  

The episodic nature of the RLA system inherently enables exploitation of differences between 
predictions and sensory feedback for faster behavioral adjustments and faster stabilization, 
stabilization on lower levels, when actions and consequences of simple interactions are learned, and 
behavioral adjustments when higher levels are learned.  

As described above, when pursuing higher behaviors, e.g. finding and retrieving an 
intruder/object, action decisions and explicit planning for action decisions is necessary. Unexpected 
events will be closely examined in the project, as they are part of the proposed scenario, where at a 
certain level the robot will learn to deal with surprise, e.g. a ball not being at the expected place and 
then learning to set actions to deal with that surprise. 

3.10 Hierarchical Controllers and Emulators 

The section on hierarchical controllers and emulators comprises many systems so that an actual 
taxonomy-based evaluation is not as straight forward as for the other systems. We still discuss each of 
the potential contributions in the following.  

3.10.1 Predictive Capabilities 

The predictive capabilities strongly depend on the type of emulator and controller employed. Several 
mechanisms introduced in the previous sections are of clear relevancy and can be used as forward 
model emulator or also as inverse model controller. The predictive capabilities then have the same 
properties as the systems themselves. Modularity and hierarchies should be employed to enable 
forward models on many time-scales detecting local dependencies as well as further-reaching, more 
abstract dependencies in time and space. 

Much more important, though, are the anticipatory capabilities embedded in the principle of 
combining controllers and emulators – potentially hierarchically. 
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3.10.2 Anticipatory Capabilities 

The potential anticipatory capabilities of the systems are enormous but require much future research to 
be combined and employed effectively. Learning influences can be expected to be effective in many 
ways including shaping of internal structures by shared predictive responsibilities (e.g. predicting 
motor activity and consequent states), the Kalman-filtering based updates promise to effectively 
ignore irrelevant inputs, filter noisy inputs, and merge sensory inputs with sensory predictions 
mediated by corresponding confidence values expressed in the Kalman gain measure. Although the 
emulator will also be used to improve the performance of the controller indirectly, DYNA-like updates 
seem to have been neglected in these architectures as well as actual planning mechanisms – probably 
because actual full-scale planning does not seem to be necessary for competent adaptive behavior. 

The Kalman-filtering based mechanisms clearly induce attentional sensory processing. However, 
actual top-down attentional mechanisms remain to be effectively employed. 

Most important in the architectures that comprise controllers and emulators are the implications 
for action initiation and control. Action initiation is mediated by the combination of forward 
predictions, sensory inputs and current goal representations. This combination is then fed to the 
inverse model-based controller that triggers the corresponding, most effective action (dependent on the 
controller used). Although differences between predicted inputs and actual inputs have not been used 
so far to incur faster behavioral adjustments or stabilizations, this seems to be another challenging 
future research direction that will be considered in the further MindRACES project.  

Finally, action decision can be influenced in many ways although most approaches so far had only 
one behavioral module or only one type-of goal (such as move the gripper to a certain position) that 
was generated. Many future challenges and potentials for successfully employing more competent 
patterns of adaptive behavior and cognitive systems capabilities can be expected, if the different 
modules of controllers and emulators are combined most effectively. This should not only lead to the 
capability of curious behavior patterns and epistemic actions to decrease uncertainty in the network 
but also can be used in combination with motivational modules shaping action decision making 
potentially yielding opportunistic behaviors and predisposing action decision making in general. 

3.11 Gradient Inverse Models 

Also gradient inverse models can be considered more as a general architectural principle than an 
actual system implementation. Thus, also in this case, the predictive capabilities depend on the 
predictive system employed. The anticipatory capabilities are mainly improved due to the capability of 
converting reward gradients to action gradients.  

3.11.1 Predictive Capabilities 

The effects of contemplated actions are implicitly predicted and backpropagated using gradients. This 
is done in the model-part of the system. The predictions are for concrete aspects of the environment – 
observations and rewards given actions. However, even more interesting would be to predict the 
change in internal state given a contemplated action change. Which systems are most suitable for each 
predictive aspect needs to be investigated further in the MindRACES project. The gradient 
propagation is clearly limited due to the problem of vanishing gradients (Schmidhuber, 1997), which 
might be alleviated by using an LSTM-based system. Other predictive capabilities strongly depend on 
the predictive architecture used. 

3.11.2 Anticipatory Capabilities   

The main influence of action gradients is on learning behavioral policies more effectively. Action 
gradients could constitute a promising learning technique for learning continuous actions by 
anticipating their potential effects on either future rewards or concrete goal-reaching. 
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In its simplest form, action gradients take in all inputs, but using RNN techniques, try to ignore 
irrelevant data by adjusting weights appropriately. The gradients towards goals or states of high 
reward could be considered a form of implicit attention toward goal states, but not real attention. 

Action gradients inevitably associate goals (combined with observation/action histories) with 
(continuous) motor programs. (Sub-) goals trigger actions, so care must be taken to produce sub-goals 
in a sensible way (i.e. a form of hierarchical reinforcement learning or using optimistic predictors). 

Action gradients constitute a form of implicit planning during learning (using the RNN world 
model as a tool during the planning process). During execution, behavior is adjusted according to 
previous implicit predictions of the action-gradient during learning. 

3.12 Context Sensitive Learning Systems 

Several aspects were discussed in the context sensitive systems introduced above. Although these 
systems have been used more intensively to guide attention, these mechanisms are clearly strongly 
correlated with action decision and control processes. Action control or a particular, goal-oriented 
action can be expected to require attention to avoid, for example, random switching of action control 
problems during action execution (attention as action). Action decision making can be expected to be 
strongly dependent on which sensory features and goals the system currently pays attention to. 
Essentially, a system that correlates a sensory processing module with a motor control module will 
most probably choose desired abstract sensory properties first and put attention onto them. The 
attentional mechanisms may then trigger the right action program to generate the sensory properties 
(selection for action). 

3.12.1 Predictive Capabilities   

In its current form, the predictive capabilities of the context-sensitive systems are somewhat limited 
but certainly may be substituted by other learning mechanisms discussed above.  

Currently, the systems employ discrete reward and sensory predictions. There is some noise 
tolerance but determinism makes the system most effective. The predictions are concrete and are 
endowed with multiple approximation levels of predictions. However, in its current form, there are no 
confidence values available for the predictions. Due to the context module, competence with respect to 
POMDP problems can be expected but has not been investigated explicitly. 

In its current form, the systems are used on one time scale. No hierarchies in time are employed 
and only immediate next input is considered. However, hierarchies are certainly imaginable and the 
distinct goal selection via attention already somewhat comprises a hierarchy and a more distant 
expectation of state in itself. 

The system has clear generalization capabilities to similar events and analogous structures and 
sequences. Further studies on the generalization mechanisms and the substitution of modules in the 
system by other, for example RNN or LSTM-based learning mechanisms, pose a promising challenge 
to the MindRACES project. 

 In its current form, there is a clear contextual processing module but the capabilities of the 
module are somewhat limited since context is processed directly as a separate input. Interactive 
preprocessing stages could be implemented that are used to detect the context that is most effective to 
distinguish different behavioral patterns or different modes of attention. Such processes pose yet 
another challenge to the MindRACES project but might be accomplished by an XCS-like clustering 
mechanism or also with a (R)NN-based mechanism. Currently, though, there is no merging of top-
down predictive and bottom-up sensory information.  

Actions may have a special status in the predictive architecture as part of the context or also 
completely separately. In this way, processing will depend on action decision making and motor 
programs. Discrete and continuous actions can be processed in this way.  

One of the main aspects of the system is the capability of ignoring distracting inputs and 
incorporating attentional biases using the available context information. Seeing that these capabilities 
are strongly related to actual cognitive processes (Balkenius, 2003), these mechanisms deserve more 
intense considerations during the MindRACES project – especially also with respect to the effects of 
the mechanisms on action decision making and control.  
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Another currently lacking capability is the prediction of inner states – since attention and 
consequent action-selection is expected to be guided by a motivational module, such capabilities may 
be included in future versions of the general context-based system architecture. 

3.12.2 Anticipatory capabilities 

The anticipatory capabilities mainly lie in the predisposition and control of sensory processing (and 
possibly action selection and execution control). Thus, the model has direct influence on model as well 
as behavioral learning by putting attention on the currently considered most important sensory features 
and currently selected motor programs, ignoring irrelevant distracting stimuli and improving learning 
of the relevant stimuli or action control patterns. Additionally, co-occurring unexpected events, such 
as novel context information and novel sensory or motor behavior patterns can be and are correlated 
with the approach taken. 

Interrelated with learning is the consequent effect on sensory processing. Attention is directly 
induced by the system using context information, consequently ignoring irrelevant attributes and 
improving processing of relevant attributes. The contextual clues facilitate target detection and 
identification. Further mechanisms concerning motivational influences or goal-oriented selection 
mechanisms were not investigated so far but are certainly imaginable in the given architectural 
framework.  

Influences on action initiation, control, and decision making were not investigated so far but pose 
a very strong challenge to the MindRACES project. A big achievement of the project would be to 
further investigate the context-based processing pre-disposition processes and also apply them to 
action decision making, initiation, and control.  

3.13 AMBR 

The AMBR model has not been applied to action control or decision making tasks. However, its 
reasoning capabilities suggest also high potential in this direction. Nonetheless, currently, the 
predictive capabilities are the ones most noteworthy. 

3.13.1 Predictive Capabilities 

Although the existing model has only been used in problem solving tasks, prediction tasks seem to lie 
in close vicinity. The following are suggestions how the AMBR model of analogy-making can be used 
for predicting future events and specific plans for implementing them within the project. 

The main idea is that a cognitive system may predict what will happen next based on an analogy 
with a past episode. This approach differs from other types of learning and predicting in a number of 
ways. (1) The prediction in the current approach is based on a single past experience, thus learning 
from single cases will be possible. (2) The prediction is based on structural similarity between the two 
cases – this allows the two cases to differ considerably at the surface level and therefore transfer from 
remote domains can be accomplished – this makes the cognitive system especially adaptive in new 
environments or facing novel tasks. The system may not have any experience in that environment or 
with that task and still cope with the situation because a remote analogy with another situation 
previously experienced. (3) The AMBR model of analogy-making is context-sensitive and therefore 
the predictions will be context-sensitive, i.e. faced with the same novel task and environment the 
systems will make different analogies in different contexts and therefore different predictions will be 
generated. 

To further specify, predictions in AMBR may be about the relevance of a specific piece of 
knowledge or specific past experience, about unobserved properties of objects, about unobserved 
relations between objects, about the presence of unobserved objects, about unobserved actions of other 
agents, about the goals of other agents, about the emotional states of other agents, about the believes of 
other agents, or even about future events that will be caused by the current situation or by possible 
actions to be undertaken. Thus, the AMBR model has great predictive potentials but is strongly 
representation dependent. The creation of an emergent representation that is then used for activity 
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propagation by AMBR seems to be a challenging endeavor for the MindRACES project. To achieve 
this, AMBR might be combined with several structuring mechanisms such as XCS, AIS, or also a pre-
processed Rao-Ballard-like hierarchical network structure.  

3.13.2 Anticipatory Capabilities 

AMBR has never been used for anticipation so far. The combination with other approaches and the 
investigation of anticipatory capabilities of AMBR itself are another aim of the MindRACES project. 
Here are some examples of such mechanisms that will be developed within the project. Top-down 
attentional predispositions might be developed by the means of an extension of AMBR. The prediction 
of a new unobserved but, for example, functionally or feature-based related object based on analogy 
should result in visual search for such an object. Unobserved, but predicted (by analogical reasoning) 
aspects of an environment could lead to epistemic actions as well as the preparedness for actions 
matching with the environmental aspects. Similarly, new goals may be generated using analogically 
derived (but still unobserved) options in the environment. Even one step further would then be to 
execute (e.g. preventive) actions in response to predicted (but not yet occurred) events. 

4 Discussion 

The system classification by the means of the system taxonomy in the previous section points towards 
several immediate and longer term challenges highly relevant for the remainder of the project – and 
most probably for the general research endeavor of developing competent adaptive anticipatory 
embodied systems. In this discussion, we contrast the different systems with respect to their predictive 
and anticipatory capabilities and identify the most important challenges lying ahead. Hereby, the 
combination of several systems and system capabilities appears highly important and appealing, not 
only due to the fact that the MindRACES project is an interdisciplinary European project that funds 
several partners with differing but related expertise but even more importantly because the partners’ 
expertise promise to add-up very nicely for the aimed creation of competent anticipatory behavior 
mechanisms and cognitive embodied systems in general.  

4.1 Contrasting Predictive System Capabilities 

The system categorizations show that the partners in the project have access to a rather wide variety of 
predictive learning systems with diverse anticipatory processing potentials in them. Although it is hard 
to contrast these potentials directly, Table 1 shows the most important predictive learning 
mechanisms, listing their predictive capabilities according to our taxonomy. All systems exhibit great 
but in many aspects differing predictive capabilities. Often, we decided to point out the immediate 
potential of a system for certain aspects of additional predictive capabilities that might be incorporated 
in the system – certainly the first big challenge before us in the MindRACES project. The partners are 
expected to continue to improve and to further analyze their respective predictive systems. The 
taxonomy may serve as an indicator of which most important challenges are lying ahead for each 
system and which aspects are the most immediate challenges that point towards successful system 
enhancements and improvements. 

Thus, one major aspect of the project remains to be the improvement of predictive capabilities of 
project-relevant systems. The table suggest that there is a current lack of system competencies in 
several seemingly highly project-relevant aspects of predictive capabilities: (1) the development of a 
predictive system that is able to predict at multiple levels of abstraction; (2) the development of a 
system that is able to predict at multiple time scales; (3) the effective incorporation of context 
information for prediction; (4) the capability of directing focus more effectively. The four points are 
discussed in the remainder of this section. 

Although several of the predictive systems have the potential of predicting multiple aspects and 
provide accuracy or confidence estimates of their predictions, it seems to be difficult to provide 
multiple predictions in parallel such as the prediction of next sensory inputs plus the prediction of the 
position of an object in the input or the prediction of other, often pre-processed environmental 
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features. The hierarchical networks starting from Rao and Ballard (1997) might be an approach to 
realize such multiple abstract capabilities. The hierarchically combined layers, structured 
appropriately, may each have a different (emerging) type of abstract representation and thus also 
abstract prediction. It seems that the integration of other mechanisms such as the clustering-for-
prediction capabilities of the XCS system or the long-term dependencies detection of the LSTM 
system into these hierarchical network structures points towards a very interesting challenge in the 
MindRACES project.  

Related but not identical to the capability of predicting at multiple levels of abstract 
representation lies the capability of predicting at multiple levels in time. Again, hierarchical networks 
seem to have the most potential in this respect. However, even more important than with respect to 
representational abstraction is the question of how to abstract in time. To generate flexible longer 
time-bridging capabilities during learning, it needs to be clarified, when predictive responsibility 
should be delegated to the next higher level. Schmidhuber’s (1992, 1993) early work points towards 
interesting methodologies of how to distribute learning responsibilities and predictive hierarchies. The 
basic principle is to delegate learning to a higher level, if the current level is well-predicting on 
(moving-) average but currently encounters highly ill-predicted input. Interestingly, it was recently 
shown that a very similar principle can serve for the effective detection and generation of options, that 
is, higher level motor programs, in reinforcement learning (Butz, Swarup, Goldberg, 2004, Simsek, 
Barto, 2004). In general, the information content received from the sensory inputs must be 
significantly higher and persistently high in order to delegate predictive responsibility to the higher 
level prediction layer. Further research in this respect seems highly important. 

Another approach for multiple levels of abstraction in time is the consideration of delay in 
sensory feedback. Hierarchical control structures partially take these feedback constraints into 
account, such as the seminal work of Kawato, Furukawa, & Suzuki (1987) in which a lowest-level PD 
controller serves as backup in case the higher level inverse model-based controllers and forward 
models are incorrect or inaccurate. The combination of these principles with more competent network 
structures, such as LSTM or Rao, Ballard’s network, points towards another big challenge for our 
project.  

The incorporation of actual context information for prediction is also only partially realized in 
most of the predictive systems available. Hereby, it can be expected that context information should 
not be simply included as an additional lower level input, but rather should be exploited as a different 
type of input that serves as a focusing and predisposition mechanism in the system applied to. Thus, in 
the rule-based XCS system, context may pre-select currently relevant rules, or, in the LSTM system, 
context information may be used to open and close certain input, forget, and output gates in order to 
stream information flow in a context-dependent way. The usage of context information from 
Balkenius’ context dependent attention-processing and reinforcement learning systems may serve as 
an inspiration of how to incorporate such mechanisms in a more flexible, neural-network-based or 
rule-based learning mechanism such as LSTM, NN-type DYNA, XCS, XACS or the AISs.  

In relation to the incorporation of context information stands the importance of directing 
predictive focus more effectively. Besides context information, other information such as task 
relevancies or motivation-dependent information may guide and direct current predictive foci in 
similar ways. The focus then may not only restrict predictive sensory processing but also should help 
to improve the restricted sensory processing or, similarly, the restricted action processing (including 
decision making and control). These considerations are discussed further in the anticipatory systems 
considerations below.  

These considerations, however, are certainly only the precursor for the actual ambitions of the 
project, that is, the development of competent anticipatory cognitive embodied systems. With respect 
to workpackage four, the ambition lies in the development of competent anticipatory decision making 
and control systems. To achieve this endeavor, it will be necessary to combine several predictive 
system competencies for the problem structures at hand and exploit these competencies to generate 
more effective anticipatory processing mechanisms. How this might be achieved is outline in the 
following section. 
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Anticipatory 
Capabilities  ALVINN AIS XACS 

NN- 
DYNA 

Hier. 
Contr. 

Inverse 
Gradient 

Context 
Systems 

Shaping Internal  
Structures yes no no no yes yes no 

On Model Learning 
Focus Learning no no no no yes no yes 
Allocate and Delegate 
Learning Resources no no no no potential no yes 

Estimate Feedback         

Reliability no no no potential yes no no 
Correlate co-occurring 
unexpected events no no yes no potential no no 

On Behavior 
Improve Behavior 
Policy yes no yes yes potential yes yes 
Offline DYNA-like 
Rehearsal no potential yes yes no potential no 

Learning  
Influences 

Planning no possible yes yes no potential no 
Sensory  
Processing Influence 
Ignore irrelevant 
information no yes yes yes yes no yes 
Selectively Improve 
Processing no yes no no potential no yes 
Process Unexpected 
Inputs in Further 
Detail no yes yes no yes no no 
Context 
Information Exploitation 
Target Detection no yes no no potential no potential 

Input Comprehension no yes no no potential no potential 
Motivation 
Dependence no potential potential no potential no no 

Attention  
Influences 

Modal Sensory 
Selection no no no no potential no no 

Inverse Modeling no no no no yes potential no 

Action Control yes potential potential yes yes yes yes 

Action Initiation  
and Control 

Faster Behavioral 
Adjustments no potential no no potential no no 

Direct Influence 
predictive adjustments no potential yes yes potential no no 

explicit planning no potential yes yes potential no no 

Via Motivations 
opportunistic behavior no potential potential potential potential no no 
shape action 
preparation no potential potential no potential no yes 
predispose action 
decision making  no potential potential no potential no yes 
Unusual  
Information  Content 
Curious behavior no potential yes no potential no no 

Action Decision  
Influences 

Epistemic actions no potential potential no potential no no 

Table 2: Relevant systems classified according to their anticipatory capabilities and potentials. 
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4.2 Contrasting Anticipatory System Capabilities 

Table 2 shows the current anticipatory capabilities of the relevant anticipatory learning systems at 
hand. Hereby, we only list those systems that were directly targeted towards anticipatory capabilities. 
Clearly, the DYNA architecture is reflected in several other systems including XACS and the NN-
based DYNA models. The artificial immune system architecture (AIS) has similar potentials. Inverse 
model-based systems as well as the inverse gradient method are additional mechanisms that may shape 
behavioral learning combining predictive learning capabilities and predictive structures with 
reinforcement learning capabilities. The context-based systems, then, provide a useful tool of how to 
include context information to guide and direct anticipatory mechanisms not only for attention 
processes but also for consequent action decision making and action control mechanisms.  

Due to the focus of this workpackage on action decision making and control, we focus on these 
concerns in the remainder of this discussion. Before doing so, though, we want to point out that the 
model learning components themselves are not as much influenced by their own predictive capabilities 
as might be advantageous. Although most considered systems use error-based information, directing 
learning focus and delegating learning resources more effectively – potentially task-, motivation-, and 
emotion-dependent – appears to pose an interesting challenge to the project partners. Other predictive 
systems including LSTM and XCS may be able to support such capabilities more effectively. 
Research in this direction seems mandatory. 

Besides the potential model learning improvements by the means of anticipatory mechanisms, the 
table shows that several other capabilities require future research. First, inverse modeling capabilities 
have not been investigated in considerable detail by any of the partners. The targeted adaptive robotic 
applications most probably require such control models so that more research effort in the 
MindRACES project needs to be directed in this direction. The inverse gradient approach converting 
reinforcement gradient into action gradients may help to improve learning of such inverse models.  

Second, faster behavioral adjustments due to unexpected sensory inputs have not been investigated 
further so far. Kalman filtering-based updates and other error and information gain estimate methods 
will help to improve such control and stabilization capabilities.  

Third, planning capabilities are especially directed, task-dependent planning mechanisms may be 
investigated further. The combination of differing predictive methods in order to enable prediction for 
action decision on multiple levels of abstraction seems inevitable. It also remains an interesting 
question how detailed planning has to be in order to be effective. Davidsson (1997, 2003) showed that 
linear predictions are often sufficient to improve behavior by inducing preventive mechanisms if the 
linear prediction (considering only what the agent would do usually) leads to undesired states.  

 Fourth, the coupling of motivational mechanisms and potentially even emotional mechanisms 
with the behavioral decision and control module poses additional challenges. Seeing that currently 
only the context systems architecture is able to direct attention and consequent action preparation and 
decision making mechanisms, the partners are encouraged to compare their system with the context 
processing mechanisms in Balkenius’ work and evaluate how they can incorporate similar 
mechanisms into their own learning systems. Context as a special input may be coupled with 
motivations in that motivations may trigger certain motivation-relevant contexts. The activated 
contexts – activated, for example, in the form of an antibody in the AIS framework or a neural activity 
pattern in the hierarchical neural architecture – then should activate corresponding motor programs 
and action decisions that usually lead to the activated context. 

Fifth, while curious behavior has been implemented in a few architectures, epistemic actions were 
not successfully shown in any architecture gathered in this deliverable. Epistemic actions may be 
realized in several systems, however, and pose an important challenge to the MindRACES project and 
workpackage four. The AIS system may exhibit curious behavior if antibodies in question can trigger 
additional information gathering by incurring action processing. The XACS architecture may be 
similarly enhanced if inputs are not available or have not enough information support – several 
enhancements and combinations with a more noise-robust learning mechanism will be necessary, 
though. Hierarchical NN-based system architectures may offer another solution for the incurrence of 
epistemic actions: Once higher levels are able to pre-activate lower level neurons, these pre-activations 
may not only lead to the faster detection of such consequent inputs but also to action activation 
mechanisms triggering curious actions. In general, while systems might have a general curious action 
selection mechanism, for example, for improving predictive model learning, epistemic actions might 
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be based on the same principle of predicted information gain, only that in this case, the plasticity needs 
to be more dynamic in that the entropy of current important available information needs to be 
considered and selectively improved. This then will lead to truly current curious behavior and pro-
activity. 

4.3 Most Important Challenges Ahead 

The contrasting factors show that the challenges related to workpackage four comprise improvements 
of the predictive capabilities of the systems as well of the anticipatory capabilities of the system. 

The predictive capabilities are expected to be continued to be investigated and improved by the 
partners, separately for each of their systems but, more importantly, also in cooperation combining the 
strengths of several of the systems. The most important anticipated enhancements are (1) the 
development of predictive systems that process and combine different sources of information (such as 
context information, sensory information, and action information) maximally effectively, (2) the 
implementation of predictive hierarchies that can generate predictions at different levels of abstraction 
in time and space, and (3) to couple the predictive representations with an action control model. 
Especially the last point poses a great challenge to the MindRACES project but might be the key to the 
generation of actual cognitive systems in which perceptions are immediately linked with appropriate 
action codes (causing affordances and bottom-up action predispositions) and action codes, vice versa, 
are linked to corresponding sensory effect codes that are expected to change after action execution. 

With such a cognitive model structure at hand, many anticipatory capabilities might even emerge 
naturally from the structure itself. However, even with a less sophisticated representation, several 
advanced anticipatory capabilities will need to be investigated. (1) Anticipatory shaping will be 
continued to be investigated by the partners and utilized to improve (the learning of) behavioral 
decision making and control. (2) The further development of curious behavior capabilities and 
epistemic action capabilities will be pursued further. Hereby, it is important that such behavior needs 
to be driven by anticipated information gain. Epistemic actions might be implemented as task-
dependent curious behavior in that tasks require information that, if currently not available, triggers 
the epistemic actions that promise to lead (or rather previously led) to this information. (3) 
Anticipatory top-down mechanisms need to be further developed, that influence bottom-up sensory 
processing. This includes attentional mechanisms (investigated in further detail in workpackage three) 
but also action decision making and control mechanisms since action decision making can be 
considered as yet another attention process. (4) Finally, a motivational and potentially emotional 
module may be coupled with the predictive system in order to induce even better action decision 
making capabilities enabling learning and execution of opportunistic actions as well as anticipatory 
actions that satisfy expected motivations (such as taking food and water on a hike). 

The anticipatory enhancements are certainly not stand-alone but are very interdependent on each 
other as well as on the underlying predictive representation used. Certainly, further investigations in 
the relevant anticipatory capabilities will again point out advantageous predictive structures, such as 
the hierarchical structures that we expect to be very suitable for the generation of effective anticipatory 
behavior. Thus, the discussed enhancements of the predictive capabilities of the system should not 
(only) be pursued in isolation but rather should be targeted from the beginning on the anticipatory 
mechanisms that we intend to implement using the developed predictive representation. Certainly, 
interactive, emergent, unexpected properties might develop along the way of this research endeavor 
and might as well lead to novel insights in information processing, adaptive behavior, embodiment, 
and cognition as a whole. 

5 Conclusions 

This document has shown that the challenges ahead are broad and not always straight forward. In 
order to create competent anticipatory, cognitive embodied systems, the systems do not only need to 
be competent in learning an effective predictive model of their environment but also need to be able to 
effectively exploit the learned model for adaptive behavior. This process is expected to be interactive 
rather than iterative in that the developing predictive capabilities should immediately cause 
anticipatory mechanisms that, vice versa, immediately influence the further development of the 
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predictive capabilities. The expertise of the partners is sufficiently broad to cover all areas of interest 
but further effort is necessary to actually combine the different bits of knowledge of each partner 
effectively to create the desired cognitive systems. It is hoped that this document does not only show 
that the efforts in workpackage four and the MindRACES project as a whole proceed in the right 
direction, but also that the partners are encouraged to further consider cooperation amongst them (1) to 
assess the potentials of each relevant learning systems with respect to the predictive and anticipatory 
challenges ahead and (2) to create combinations of their systems to be able to tackle the challenges 
most effectively. The challenges and potentially highly rewarding tasks ahead in the MindRACES 
promise to lead to new inventions of competent anticipatory behavior-based robotic systems as well as 
to a better understanding of adaptive behavior and even cognitive processes in general. The 
categorizations and contrasting discussions in this document can serve as the guidelines to develop 
such competent anticipatory cognitive embodied mechanisms and systems. 
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