
File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 1/
95

FP6-511931

Mind RACES

from Reactive to Anticipatory Cognitive Embodied Systems

DELIVERABLE D8 (D2.2)

Scenario Design and Implementation

Due date of deliverable:
30 / 09 / 2005

Actual submission date:

11/ 11 / 2005

Start date of project: Duration:
01 / 10 / 2004 36 month

Organization name of lead contractor for this deliverable: Revision:
ISTC-CNR 8

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X
PP Restricted to other programmes participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 2/
95

Document identifier: DELIVERABLE_WP2_N_2

Date: 11/11/2005

Work package: WP2

Partner(s): IDSIA, IST, ISTC-CNR, LUCS, NBU, NOZE, OFAI,
UW-COGSCI

Lead Partner: ISTC-CNR

Document status: Approved

Deliverable identifier: WP2_D2.2

Delivery Slip

 Name Partner Date Signature

From LUCA TUMMOLINI ISTC-CNR

Verified RINO FALCONE ISTC-CNR

Approved by RINO FALCONE ISTC-CNR

Files

Software Products User files

MS Word™ DELIVERABLE_WP2_N_2.DOC

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 3/
95

Project information

Project acronym: Mind Races

Project full title:

MIND RACES: from Reactive to Anticipatory

Cognitive Embodied Systems

Proposal/Contract no.: IST-511931

Project Manager: ISTC_CNR

Name: Rino Falcone

Address: CNR-ISTC via S. Martino della Battaglia,44 00185
Rome ITALY

Phone: +39 06 44 595 253

Fax: Fax: +39 06 44 595 243

Mobile:

E-mail rino.falcone@istc.cnr.it

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 4/
95

TABLE OF CONTENTS

PART 1 – Management Overview ...6
1 Document Control ...6
2 Executive Summary...6
3 Terminology ...6
PART 2 – Deliverable Content..7
1 IDSIA ..8

1.1 IDSIA SCENARIO IN DETAIL ..8
1.2 IDSIA ENVIRONMENTS ...9
1.3 CAMERA IMAGE TRANSFORMATION..11
1.4 SOFTWARE FRAMEWORK ...12

1.4.1 Local API ...13
1.4.2 Remote API ..14
1.4.3 Server Modifications ...14
1.4.4 Client Software ..14

1.5 SIMULATED VISION ..14
1.5.1 1D-simulation ..15
1.5.2 2D-simulations...16
1.5.3 3D-simulations...16

1.6 CONCLUSION ..18
2 IST..19

2.1 AIBO ..19
2.2 MOTION AND POSE EDITOR FOR AIBO ...21
2.3 ENVIRONMENT AND ROBOT SIMULATOR ..22

2.3.1 Environment Manipulation ...22
2.3.2 Visualisation ..23
2.3.3 House Blueprints ...24
2.3.4 Communication with the Domotic Web Server..25
2.3.5 Virtual AIBO Control ..25

2.4 CONCLUSION ..26
3 ISTC-CNR...27

3.1 THE FINDING AND LOOKING FOR SCENARIO IN DETAIL ...28
3.1.1 The environment and the tasks ...29
3.1.2 Dimensions through which the difficulty of the tasks will be manipulated..29

3.2 THE GUARDS AND THIEVES SCENARIO IN DETAIL..30
3.2.1 The first task...30
3.2.2 The second task..34

3.3 FINDING AND LOOKING FOR SCENARIO ..39
3.3.1 The simulated robot...39
3.3.2 The real robot ..41

3.4 GUARDS AND THIEVES: THE SIMULATION FRAMEWORKS ..42
3.4.1 AKIRA...42
3.4.2 Jadex...45

3.5 CONCLUSIONS...47
4 LUCS ...48

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 5/
95

4.1 ROBOTS...49
4.2 VIDEO RECORDINGS...51
4.3 SOFTWARE ARCHITECTURE ...52

5 NBU ..55
5.1 PHYSICAL ENVIRONMENT ..56
5.2 NBU’S SYSTEM ARCHITECTURE ..58

5.2.1 The world layer..59
5.2.2 Middle layer ...60
5.2.3 Reasoning layer ...60

5.3 DUAL...60
5.4 ACQUAINTANCE WITH THE ROBOTS AND THE SIMULATOR..61

5.4.1 Making the simulated robot move realistic..61
5.4.2 Create a simulated vision system..62
5.4.3 Identify the state of the current environment ...63
5.4.4 Filter the visible information ..63
5.4.5 Establish a two-way connection with external software module..63
5.4.6 Make the simulated robot solve some base problems ...65

5.5 KNOWLEDGE REPRESENTATION AND MANAGEMENT..66
5.5.1 Development of knowledge representation in DUAL/AMBR ...67
5.5.2 Learning ...69
5.5.3 Transfer ..69
5.5.4 Decision Making..69
5.5.5 Generalization ...70

5.6 CONCLUSION ..71
6 OFAI..72

6.1 OFAI SCENARIO IN DETAIL..74
6.1.1 The OFAI test bed..74
6.1.2 Scenario level one – capturing basic „how to” knowledge..74
6.1.3 Scenario level two – generalisation ...76
6.1.4 Scenario Level three: Hunter-Prey Scenario...77

6.2 OFAI ENVIRONMENT...78
6.2.1 Simulation versus Reality..78
6.2.2 Robots being used..81

7 UW-COGSCI ...87
7.1 MONITORING AN INTERESTING SCENE ..87

7.1.1 Representation of the Environment ..88
7.1.2 Learning Object Behavior...89
7.1.3 Learning Visual Input Change..89

7.2 FINDING A SPECIFIC OBJECT..89
7.2.1 Action Control to Find Objects...90
7.2.2 Object Identification..90
7.2.3 Occlusion of Objects ...90

7.3 FINDING MEMBERS OF A CLASS OF OBJECTS..91
7.4 LOOKING FOR AN OBJECT IN A HOUSE ..91

7.4.1 Different Tasks yield Different Challenges..92
7.4.2 Suitability of Environment and Possible Solution Approaches ..93

7.5 PARTNER INTERACTIONS AND CONCLUSIONS...93
8 References ...94

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 6/
95

PART 1 – Management Overview

1 Document Control

This document is a co-production of all the partners mentioned above. After the individuation of the
MindRACES scenarios as reported in D2.1, all the partners have started the implementation phase
of the project and discussed together the results, as far as scenarios implementation is concerned,
during the third project meeting. On the basis of the discussion, they have edited the contributions
that are reported below.

2 Executive Summary

The objective of this deliverable is to report the activity done by the consortium to design and
implement the three selected scenarios, the tasks and the environments that will be used in the next
phases of the project. The output of this deliverable is used to develop, evaluate and test the
enhanced architectures and robots whose results will be reported in D3.2, D4.2 and D5.2.

3 Terminology

The following table summarizes the working definitions used throughout the document.

Robot:

A real or simulated agent having specific sensors (e.g. camera,
infrared/ultrasound sensors), actuators (e.g. two wheels, a three-segment
arm), and a body (e.g. a cylinder, three rigid segments).

Mechanism:

Specific architecture and algorithms (=structure + functioning) of a
model/controller.

Environment:

A particular real or simulated arena with specific features (i.e. dimensions,
walls, type of “terrain”), containing particular objects (i.e. balls, boxes, doors,
lights), and containing robots with specific features (i.e. sensors, actuators
and bodies).

Scenario: A set of tasks that share a common portion of an environment.
Task:

The specific goal one robot or group of robots have to accomplish in a
scenario.

Table 1 Terminology adopted in the document.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 7/
95

PART 2 – Deliverable Content

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 8/
95

1 IDSIA

FINDING AND LOOKING FOR
 Finding a specific object (Game Room)

The purpose of this task is to find a specific object in the environment (e.g. a red cube). The
degree of detail in the description must be sufficient to define unambiguously a single object,
not a class of similar ones. For example “red cube” is to be used in the case when there is a
single red cube, and “big red cube” if there are several red cubes with different sizes and only
one of them is big.

 Finding members of a class of objects by class description (Game Room)
The purpose of this task is to find any object matching some general or partial description (for
example “find a cube” or “find a red object”). As in the previous case, prediction or
anticipation can be based on previous experience, recurring spatial relations, etc.

IDSIA intention is to let an agent learn to find objects in a natural environment by controlling an
artificial fovea. In what follows the implementation of the fovea for a real omnidirectional camera
and some simulated cameras are described. The client/server framework for a real robot for easy
behavior development is also presented. Eventually, the implementation of a 3D simulation of a
robot in a real environment is illustrated.

1.1 IDSIA scenario in detail
The agent is an autonomous wheeled robot with a fixed camera. A process on the robot simulates a
movable fovea centralis, with higher resolution in the center and coarser resolution towards the
borders instead of the raw camera image. This reduces the huge data from a real camera. The fovea
has attention-shifting actions such as “turn sensor right by 10 degrees”. Actions for the robot are
abstract driving commands too. The concept of using a fovea to reduce huge data is based on
Schmidhuber and Huber (1991). They trained a feed-forward neural network to center and orientate
the fovea on presented objects.

The environment is a standard office room or a prepared robot lab. Several objects cooccur
frequently or are semantically related, e.g. a table, a bottle and a cork. Arbitrary degrees of
difficulty are possible through complex visual scenes, partial observability, partial occlusions etc.
IDSIA has also implemented some simulations for different kinds of environments for the first
evaluation of learning experiments.

The robot has to find a target object in the room through active perception by producing a sequence
of saccades or other movements until the target is centered in the visual field. The robot has to spot
the target object as quickly as possible in the environment.

IDSIA exploits the camera image as the sole sensor of the robot. There is no intention to employ
structures for explicit knowledge representation as long as it is possible to solve the tasks without
them. Other preprocessing operations like edge detection and optical flow computations will only

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 9/
95

be explicitly implemented, if it is inevitable. This is a major difference to other successful vision
based robot control learning tasks. For example, LeCun et al. (2004) have built an autonomous
robot that avoids hitting obstacles by the use of a multi-layered feed-forward network. However, the
network was predefined to learn convolutions, e.g. for edge detection.

This section is organized as follows. First the robot and the real environments for our experiments
are described. Then the transformation process of converting the omnidirectional camera image to
the fovea sensor input is illustrated. The next sub-section deals with the software framework of the
robot. Afterwards, the different simulated environments are presented in detail. Finally, first results
and the potential modifications to the robot, the tasks, and the environments are discussed.

1.2 IDSIA Environments
IDSIA has adopted a fully autonomous Robertino robot (see Figure 1). The cylindrical robot has a
diameter of 40 cm and a height of 43 cm; its weight is 6.5 kg. It is equipped with a holonomic three
wheeled drive, and has a PC-103 (industry standard) with a 500MHz Intel Mobile-Pentium II
processor on-board and communicates through WLAN (IEEE 802.11a). Its sensors consist mainly
of an omnidirectional FireWire camera, which is used to simulate the fovea. Other sensors will not
be exploited. The actuators are the three wheels and the simulated fovea, which are controlled by
abstract commands for direction and velocity. A controller on the robot calculates the wheel
velocities with respect to the assigned commands.

Figure 1 The Robertino robot developed by the TU München (www.openrobertino.org).

Three different kinds of real environments are used to improve the learning complexity of the
physical robot step by step. The environment for the first task is a whiteboard with coloured shapes
(see Figure 2). The size of the board is 150 cm x 120 cm; the shapes have diameters from 10 cm to
30 cm. The robot is placed in front of the board. It can only move its simulated fovea and cannot
move around with its wheels. The task is to find a specific object, which is in general not seen at
first view. The advantage of this setup is that the fovea movement is extremely fast, because no
physical motion is necessary. The learning time is short in contrast to a real fovea or a real moving
robot.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 10/
95

Figure 2 The whiteboard-world. Shapes of different colors are mounted on a whiteboard.

The second environment is an empty square room with a size of 550 cm x 280 cm (see Figure 3).
The room is uniformly illuminated, has a grey carpet and white or grey walls. It has no windows
and natural light sources; bright shining spots are eliminated. Some coloured boxes – in the size of
the robot – can be arranged on the test field.

Figure 3 The small robot lab. Colored boxes are arranged on the floor. The robot must move around some

obstacles to reach the searched object (the green bottle).

The third environment is a real office room with a size of 650 cm x 650 cm. In Figure 4 one can see
a snapshot of the room. It has many complex properties, which are too difficult for standard
computer vision applications. It is unstructured, has different light sources and varying
illuminations, unexpected objects, moving obstacles, etc. This is the most challenging setup for a
robot's searching task.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 11/
95

Figure 4 The real office environment. The environment is very complex. It has many different objects and is

non uniform illuminated. The sunshine through windows produces bright light stripes and the desks produce
shadows.

1.3 Camera Image Transformation
The Robertino robot is provided with an omnidirectional camera (Figure 5). Due to the 360° view,
the image is distorted. To control the robot by a human only with a visual input as sensor, it is
preferable to obtain an image without distortion. Figure 6 illustrates the distortion removing
process. Unlike other methods – like Tsai (1986) –, IDSIA uses a very simple distortion removing
algorithm, because the transformed image will not be used by sensitive computer vision processes,
which require an accurate input.

Figure 5 The omnidirectional camera. A FireWire web cam looks upwards into a spherical mirror (right) and

receives a distorted image of the 360˚ environment (left).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 12/
95

Figure 6 The distortion removing process. A 90˚ part of the distorted image is selected (left) and transformed

to a rectangular bitmap (right).

The non distorted image is used to build the data set of the fovea: the image is transformed into
several parts of different resolutions. The center of the fovea has the original resolution. In the outer
parts the image is subsampled in several steps. Figure 7 shows a picture of the result of the fovea
transformation. The input data is reduced from 36608 pixels to 429 pixels. If the fovea is not
centered in the image, the outlying pixels are black.

Figure 7 Fovea transformation of a photograph (right). In the center of the fovea is the highest resolution; at

the border is the lowest resolution. The original image is divided into three regions with different resolutions
(left). Every region has been sub sampled to a size of 13 x 11 pixels (middle).

1.4 Software Framework
The Robertino robot runs under a standard Debian/GNU Linux operating system. Some drivers for
special hardware were added to the system: one for the CAN bus interface on the robot and one for
the FireWire (IEEE 1394) interface. Especially the CAN bus driver is a non standard PC
component. The web cam is connected with the PC over the IEEE 1394 interface. The system uses
the Video4Linux library to grab pictures from the camera. The CAN bus is used to communicate
with the motor driver, the tick counters, and the infrared (IR) distance sensors on the robot.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 13/
95

The framework for programming the robot consists of two separate C++ based application-
programming interfaces (APIs). The first is hardware-close and is designed for developing fast
applications with a low system delay on the robot. The second API is intended for development on
an external workstation. This interface uses a client/server architecture to connect the robot with a
workstation. The client API is available for Linux and Windows. After the completion of the
development phase, the software can be ported to the robot to achieve a fully autonomous robotic
system. The chart in Errore. L'origine riferimento non è stata trovata. gives an overview of
Robertino’s software system.

Figure 8 Robertino’s software components. Two programming frameworks are available: one local API and

one network client API.

The Robertino software is not well documented yet. The web site for on-line documentation is often
off-line or improperly configured. Only one technical report from Verbeek et al. (2004), the header
files for the APIs as well as a few programming examples describe the software system. A small
overview of the APIs is provided in the next paragraphs.

1.4.1 Local API
The local API comprises three modules: the motor controller and sensor unit (moc), the vision unit
(vision), and an operation system independent communication unit (com), which can be used to
communicate with other robots or external computers.
The communication unit contains two classes: a Socket class to establish a connection and to read
and write raw data of any length and a ComData class to convert pairs of names and values to raw
data and vice versa.
The vision unit hides the complex initialization of the camera setup and provides a method
Vision::capture2 to grab an image. Furthermore, some methods for reading camera parameters and
calibration are provided.
The moc unit contains a class MotorControl with methods for reading infrared sensor information,
setting velocity commands for the robot, and reading collected odometry information from the
robot. The calculation from robot velocities to motor currents is conducted by the API. Similarly,
the Euclidean odometry information is calculated from the motor tick counters by the API.

Linux CAN V2L

Local API (network, sensors, actuators)

 Remote control servers Local Application

 Remote control client API

 Remote Application

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 14/
95

1.4.2 Remote API
The server side of the remote API is based on the local API. Three server daemons run on the robot:
drived (for sensor and actuator communication), visiond (for camera services), and ctrld (for
shutting down the robot and restart services). The corresponding classes in the client API are
DrivedCom, VisiondCom, and CtrldCom. The classes are based on Qt from TrollTech
(www.trolltech.com). Qt is a C++ programming library, which is independent from the operation
system and contains classes for communication, graphical user interfaces, file handling, and much
more. It is available for Windows, Linux, Mac OS, and some embedded systems. It uses a so called
signal/slot mechanism to send messages through the system. The client classes of the remote API
use only Qt’s signal/slot mechanism and socket API.

1.4.3 Server Modifications
The bottleneck for the remote control of the robot is the image transfer from the robot to the
external computer. Without compression, transfer rate is limited to 4 images per second. Therefore,
the API provides a jpeg compression parameter. However, jpeg compresses the whole image, but
we want to use a fovea with a maximum image quality in the center of it and lower quality towards
the borders. The fovea itself reduces the needed bandwidth significantly. Therefore, the distortion
removing process must be executed on the robot.

1.4.4 Client Software
The client software is derived from the Robertino program robomon (robot monitor). The software
is modified to handle fovea specific commands for the movement of the fovea. Moreover, an
interface to control the robot with a joystick and to control the robot with AI software is added to
the system. Figure 9 shows a screen shot of the software.

Figure 9 Screenshot of the client software. The manual control of the robot is on the left; the fovea image is

shown on the right; the learning control interface is in the middle.

1.5 Simulated Vision
To accelerate the development of learning algorithms and to boost the learning time IDSIA will also
work with some levels of simulation with different complexity. To start with an abstract one-
dimensional simulation with a moving fovea in a one-dimensional environment.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 15/
95

1.5.1 1D-simulation
In the simplest simulation, the fovea deals with a one-dimensional environment. The robot stands
still and can move the fovea left or right to focus on different objects to find the desired one. IDSIA
has implemented a simulation of a one-dimensional world. The world consists of 27 bins in a line.
Imagine a bin as a single pixel or a conglomerate of pixels. Every bin is able to contain one object.
The fovea consists of 7 sensors in a line. Two of them – the outmost ones – consist of 9 bins and
other two of 3 bins. The three sensors in the middle are mapped to one bin each. Only the centered
sensor can distinguish between different objects. All other sensors can only recognize if there is at
least one object in the respectively mapped bins. Figure 10 shows an example of a 1D environment.

Figure 10 1D fovea in a 1D world. The detector of a specific object is only in the center of the fovea. Therefore

the robot must focus on an object to recognize the object type.

The interface to interact with the simulation is simple. There are 5 procedures to initialize, provide
actions, and receive fovea sensor data. Table 2 describes the interface functions.

void init () Initialize the simulation. This function must be called
ones at start-up.

const vector<double>&
getObservation ()

Returns the fovea input and some other agent dependent
inputs, e.g. position of the robot.

void useAction (vector<double>
action)

Calculates the state of the world at the next time-step
with respect to the current action of the agent.

void reset () Generates a new world randomly and reset the agent.
bool isFinished () Is true, if the agent has reached the target.

Table 2 Fovea world interface. Five procedures are available to control the simulation

0

1

2

Environment

Environment

Environment

Fovea

Fovea

Fovea

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 16/
95

1.5.2 2D-simulations
IDSIA implemented two kinds of 2D-environments. The first world is an extension of the 1D-
simulation. The image size is 27x27 bins and the fovea consists of 25 sensors. Figure 11 shows the
relationship between the input and the fovea. The interface is the same as in the 1D case except for
the size of the input and output vectors.

Figure 11 2D fovea in an abstract 2D world. Like the 1D-world, the detector of a specific object is only in the

center of the fovea. The 729 input values from the image are reduced to 25 values of the fovea.

The objects in the two previous simulations are abstract in terms of their properties. The objects
have only the attribute they are either the ones we are looking for or not. However, the second 2D-
simulation uses an image with visual objects. The objects are triangles with one angle up or down
(see Figure 12).

Figure 12 2D fovea in a visual 2D world. The fovea has it focus on the left triangle of the image (left). In the

lowest resolution (upper image in the middle row), the objects have the same shape. Only in the area with higher
resolution (lowest image in the middle row), the orientation of a triangle is visible. The right image shows the

composed fovea image.

1.5.3 3D-simulations
With respect to the real world environments, IDSIA also uses two different 3D-world environments:
one with simple objects (colored boxes, cylindrical shapes, balls) and one with objects from an

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 17/
95

office environment. Like in a real world environment, the (simulated) robot has to deal with issues
such as occlusions and view-distorting shadows. Figure 13 shows an image of a possible simple
box-world. Therefore, both the simple environment and the office environment will eventually be
designed such that they match better the real-world environments.

Figure 13 3D simulation of the box-world, produced by Ogre3D. This figure shows a room with some colored

boxes and a cylindrical obstacle. In the left figure, the target object (the knot on top of the red box) is occluded
by the cylindrical obstacle, so the robot has to deal with partial observability. It has to remember what it has

seen before and where it has been in order to make a good decision on where to look and go next. Moreover, it
has to rely on expectations in order to find the target faster (e.g. it could learn that targets tend to be on top of

red boxes).

A simplified physics system is adopted, because more realistic tools like ODE are, for now, too
complex and too slow. Since the stress in this task is on perception (anticipation of information
gain) rather than action/control, we do not need the physics to be very realistic. The only important
feature is collision detection in order to prevent the robot from moving into other objects.

The 3D visualization of the simulated Robertino, on the other hand, needs to be realistic. The vision
is based on Ogre3D (Object-Oriented Graphics Rendering Engine, www.ogre3d.org) which enables
fast rendering of 3D environments in a user-friendly, object-oriented manner. The library is a real-
time 3D rendering engine, is cross-platform (Linux, Windows and Mac), and works with both
OpenGL and DirectX. The API of Ogre3D allows easy manipulation of all relevant features such as
shadows, lighting, movement, camera settings, and image production in various resolutions and
points of view.

The simulated robot has the same abstract control interface as the real robot. The commands are
abstract velocity values for the directional movement and the rotational speed. Furthermore, it has
the same fovea-based visual system.

IDSIA uses Ogre3D system to produce views at three different levels of detail (low, medium, high),
corresponding to the three regions of the fovea, and use the resulting data as input for the fovea
learning algorithms.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 18/
95

1.6 Conclusion
IDSIA has done all preparatory work to start with learning experiments at different levels of
complexity with the common goal: finding a target object in a partially observable environment by
producing a sequence of saccades or other movements until the target is centered in the visual field
of a sensor like the fovea centralis. In the simplest environment, the fovea is a sensor in a one-
dimensional array. In the most complex environment, the robot looks for the object in a real-world
domain. However, the agents in all environments have the same kind of sensor, which reduces the
huge input data to a manageable size: the fovea.

Some modifications to the robot and the environment could make sense. To bring the simulation of
the fovea close to a real fovea, the camera can be attached to a motorized camera mount. A second
camera with a zoom object lens can be added to the robot to imitate the high resolution area of the
fovea. If it were necessary to use a more physical simulation of the robot, it is possible do use ODE
with the OgreODE plug-in for visualization. Also, the real and simulated environment can be
changed, if a task is too complex or too simple in the current environment.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 19/
95

2 IST

This scenario tries to integrate emotion and anticipation to achieve the believability of an embodied
agent. This scenario may also be extended with the presence of another robotic agent that
“observes” the scene and given its relation to the Aibo, reacts emotionally.

So far, in order to achieve this scenario, IST has developed a set of tools that help the exploration of
the believability of the agent in the scenario. These tools will here be briefly described, which
include a robot, an editor of motions for this robot and a simulator of the domotic environment that
the robot will be in.

2.1 AIBO

As the scenario focuses on the believability of the agent and believability is based on emotional
responses from the agent, there’s a need for a robot that can have an affective interaction with the
human.

Figure 14 Two AIBO robots.

FINDING AND LOOKING FOR

 Fetch that object!
This is a human-robot interaction task focussed on believability. In the room there are several
crates lie scattered around, acting as obstacles between Aibo and its searched target.
The human throws a red ball into the next room, then turns to an Aibo robot and says:
“Fetch!” The robot should run into the room and designs a plan to find the red ball. While
searching the space, its attention is drawn to a small handkerchief whose colour is just as the
ball it is searching for. With its ear pointing forward, Aibo starts running, waving its tail and
barking in anticipation. However, as soon as the robot realizes it is a mere handkerchief, its
ears drop back and its tail falls between its legs. With a disappointed face, Aibo starts moving
back, its gaze wandering across the room...

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 20/
95

The robot that matches these requirements is AIBO from Sony. AIBO is a home entertainment
robot with the form of a dog and the main reasons for its choice are the relatively low cost and the
state-of-the-art hardware, which comes with large development support. No other robot available
for research has its price/quality ratio nor its mind programming easiness and community support.

Another important reason is the affective potential of such a robot. It was developed with affective
interaction in mind. AIBO’s emotional expressiveness can be achieved through several ways: it can
have body motions that express its emotions and it can show emotions through its facial
expressions. This is achieved through a grid of LEDs of four colours, it can produce sounds, which
can express an emotion. In addition, the off-the-shelf mind software can express AIBO’s emotions
through its behaviour at some level. However, as this is a black box it cannot be reused for our
research.

The possibility of using the robot iCat from Philips to incorporate this scenario is being studied.
iCat is a robot designed for human-robot interactions which can generate facial expressions and also
has a camera and microphones. This way iCat has a lot of affective potential.

For the IST scenario, the objectives will be to use all of the AIBO’s forms of emotional expression
along with the anticipatory affective behaviour to reach the desired believability of the agent.

So far, a set of tools has been designed to help the development of the scenario. As emotion
expression is an important part of the scenario and body expression one of the major ways to
achieve it, there had to be a tool to develop complex motions. This tool is AIBO Editor, which is
described next. Also when developing an agent on a real robot it is very useful to have a simulator
for the robot and the environment so that real world implementation issues are abstracted and the
agent behaviour becomes the focus of attention. So, to aid in the process of developing the scenario,
a simulator was developed for the domotic house scenario with a virtual AIBO in it.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 21/
95

2.2 Motion and Pose Editor for AIBO
AIBO Editor is an application developed to create and edit AIBO’s body expression through poses
and motions.

Figure 15 A view of the AIBO Editor tool.

Some tools, such as Skitter and Sony’s Motion Editor, already exist for this purpose and are free of
charge. Moreover, the tool has some differences that can be really important for the scenario
implementation. So besides the usual poses and motions, like the other tools present, there are also
composed motions, which are a composition of other motions reusing some parts of each one.

At the bottom of this hierarchy there’s the AIBO Pose. A pose is defined by all the joint values of
the robot. Above the poses are the Simple Motions like the ones created by other applications, which
are just defined by an array of poses and generated by their interpolation along time. Then, there is
the Section Motion, which is just a simple motion but it has the information on the high priority
joints, that is, the most important joints for that motion. And above all there’s the Composed
Motion. The composed motion is a set of section motions and the order of priority between them in

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 22/
95

getting resource locks for the joints. For instance, we could have a motion when AIBO is happily
walking and one when AIBO is searching for something (moving its head around). If we want
AIBO to happily walk while searching for the ball, then we can just say we want all joints except
the ones related to the head from the walking motion and create a composed motion combining both
(the walking and the searching motions). The walking motion is the high priority one.
Along with the editor there are a set of classes that allows the creation and manipulation of these
special motions.

2.3 Environment and Robot Simulator
The domotic house simulator is an application called Domo Simulator. It simulates an automated
house, the domotic control system of the house, its web server, and the robot in the house.

Figure 16 An overview of a virtual AIBO in the Domotic Simulator.

2.3.1 Environment Manipulation
The domotic environment is dynamic so the simulator tries to offer ways of changing the
environment. These changes are made in variables of the environment like the temperature of a
room, the desired temperature for that room, the lamp intensity, the door and window openings and
the position of a person in the house. There are three options for domotic environment
manipulation: a variable can be changed through the application menu, an action script can be
loaded and executed and commands can be submitted through the web server to the domotic control
system.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 23/
95

First we have to distinguish the kinds of changes in the values of the variables. A change can take
place immediately or throughout time. Immediate changes should be avoided when simulating real
environment behaviours, as a variable never changes immediately between two distant values (i.e. a
door takes some time to close even if it’s closed suddenly). This kind of change should only be used
for debugging. Smooth variable changes are a linear interpolation between the actual value and the
desired value at the given time. One can close the door in 3 seconds. As interpolation in the
simulator is linear (at the time) a different one can be approximated to several linear ones.
Variable changes through the application menu are trivial. The variable to be changed is chosen.
Then, the desired value, the interpolation duration and the subject of that change are indicated in the
dialog box. The simulator, then, executes the change in the variable, which we call action.
Action scripts are text files with a list of actions and the time they should occur. Each action has the
same variables as the ones specified in the menu (variable, subject, duration, value) plus the time
they should start. Several actions can be executed at the same time so this is an advantage over the
menu solution. Another advantage is that the environment behaviour can be reused and improved
with little effort.
The third way environment can be changed is through communication with the web server. The web
server of the domotic system has a socket interface based on the UDP/IP protocol so any application
connected through a TCP/IP network can send messages to the server and therefore change the
environment. This provides an improvement over the action script solution because the behaviour
does not have to be hardwired from the start so it can be more dynamic. The protocol for messaging
with the web server is described later.
These options for changing the environment are not mutually exclusive. All of them can be working
at the same time. For example, an action script for fire in the kitchen can be running, an external
application can be changing the user’s position in the house (the user walking and extinguishing the
fire) and the simulator user can go to the menu to change the temperature of a bedroom at the same
time.
Also, the position of a person in the house can be changed through direct manipulation in the
simulator through 3D navigation, which will be described shortly.

2.3.2 Visualisation
Since body motion is an important part of the scenario implementation, a robot simulator had to
allow a realistic representation of such a robot so that people interacting with the environment could
have an affective experience. So the environment and robot simulator has 3D visualisation and
navigation capabilities.
One can navigate through the house just like in first person shooter games with a free camera or
through the eyes of a user in the house or through the AIBO itself. As the camera is free, the house
can be watched from any point like in the figure below.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 24/
95

Figure 17 A view of the whole environment (house).

Also in the figure above hints of some variables values can be seen. An indication of the
temperature of a room can be seen in the right topmost (north-east cardinal point) corner of the
room. The temperature is indicated by the colour of the square: white for 22.5ºC, blue for 0ºC and
red for 45ºC. There are shades of those colours between these values. Cyan is below 0ºC and black
is above 45ºC. The lamp intensity of the room can be seen in the light of the room. Window and
door openings can easily be identified. And the user and AIBO are in their positions, the user being
the cyan lollipop.
These are just hints as they are not exact values. To see the exact value of a variable, the menu
Query should be used or the web server can be asked to retrieve that value.

2.3.3 House Blueprints
The house blueprint is defined in a text file. This way, different room settings can be easily
simulated just by changing house definitions in the blueprint file.
Houses are defined in a Cartesian coordinate system space where each unit represents one metre.
The direction of the YY axis is towards the north and the direction of the XX axis is towards the
east.
Each room has to be surrounded by exactly four walls and each wall must belong to a maximum of
two rooms, each in a different side of the wall, meaning that there can not be diagonal walls and the
rooms are arranged in a kind of grid where each row or line can have its own length.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 25/
95

2.3.4 Communication with the Domotic Web Server
As described earlier, the simulator application has an emulated web server. This web server
provides an interface between the domotic control system (and the environment) and any other
entity with access to the application through the UDP/IP protocol. This entity can be the AIBO
robot, an application implementing AIBO’s mind, a web page or an application controlling the
dynamics of the environment.
Over the universal transport protocol is a messaging protocol for the domotic web server based on
ASCII human readable messages. This protocol can change variable in the house just like an action
described earlier, and it can be used to get information from the environment. The protocol
messages are listed in the table below:

Message Description

(SET <Subject/Device> <Property> <value>) Change a variable in the house
(GET <Subject/Device> <Property>) Get a variable value from the house

(FORWARD <Subject/Device> <Property>) Request variable information whenever a variable
changes

(UNFORWARD <Subject/Device> <Property>) Cancel a previous continuous information request
(FORWARD-TIME <Subject/Device> <Property>

<msPeriod>)
Request variable information every period time

(REPORT <Subject/Device> <Property> <value>) Response from the server to an information request
(PROTOCOL) Ask the server which protocol is using

(PROTOCOL-RESPONSE <ProtocolName>
<CaseSensitivity[Y/N]>)

Server response to the above message

This protocol is meant to be aimed at a user of the house so changing the room temperature does

not make sense but this option was kept so applications can control the whole environment.

2.3.5 Virtual AIBO Control
The AIBO in the house is controlled through a mechanism that is similar to the one in the web
server messaging protocol. The application provides a socket interface based on the UDP/IP
protocol so that any application can control the AIBO’s behaviour.
The emphasis of this control is based on the visualisation of the AIBO’s behaviour for affective
evaluation so the control is not physical as in a real AIBO. The robot joints are not controlled
individually, the motion of the robot is based on the motions defined in the AIBO Editor application
and the AIBO’s movements through space are not a consequence of these motions as it would
happen in a real environment. The movement takes place by interpolating the AIBO’s positions and
orientation.
The high level protocol of control is very similar to the one for the house and its messages are
described next.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 26/
95

Message Description
(MOVE <X> <Y>) Move the AIBO from actual position to X,Y at

constant speed
(STOP) Stop a movement

(GET-POSITION) Ask the simulator for the position of the AIBO
(ROTATE <DegreesFromNorthDir>) Rotate the AIBO to a given direction

(GET-ORIENTATION) Ask for the AIBO’s rotation
(SET-POSE id) Set a specific pose for the AIBO

(SET-ANIMATION id) Set an animation to for the AIBO
(PLAY-SOUND id) Make the AIBO play a sound

(REPORT-POS <X> <Y>) Answer from the server to a (GET-POSITION)
(REPORT-ROT <Orientation>) Answer from the server to a (GET-ORIENTATION)

(DONE-MOVE) Sent by the server when a movement takes place
(DONE-ROTATE) Sent by the server when a rotation takes place

The mind of the AIBO is then implemented in an external application to the simulator and controls
the virtual AIBO through these messages and the house variables through the web server.

2.4 Conclusion
So far, IST has developed a set of tools to be used in the implementation, testing and analysis of the
AIBO agent. While the simulation provides fast and problem-focused testing and analysis, the real
AIBO provides more affective experiences and rich environment accesses. The Simulator could be
improved to approximate the simulation to real world interaction. However, the development of the
real AIBO hasn’t yet taken place.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 27/
95

3 ISTC-CNR

 FINDING AND LOOKING FOR

 Finding a specific object (Game Room)

The purpose of this task is to find and reach a specific object in the environment (e.g. a red
cube). The degree of detail in the description must be sufficient to define unambiguously a
single object, not a class of similar ones. For example “red cube” is to be used in the case
when there is a single red cube, and “big red cube” if there are several red cubes with
different sizes and only one of them is big.

 Finding members of a class of objects by class description (Game Room)
The purpose of this task is to find any object matching some general or partial description (for
example “find a cube” or “find a red object”). As in the previous case, prediction or
anticipation can be based on previous experience, recurring spatial relations, etc.

 Looking for an object in a “dangerous” House (House)
In this task the robot is looking for a target object in a House where there are also dangerous
objects. The task is designed to explore specific relations between emotions and anticipation.

GUARDS AND THIEVES

 Conflict in accessing the valuables - simple (House)
This task involves two agents – one thief and one guard. In the beginning several valuables are
hidden in at least two different places or there are several accesses to the hidden place, in
order to make the guard’s task non-trivial. The session ends either when the thief has collected
or found all the valuables or when the guard has arrested the thief either by blocking him or
by touching him.

 Conflict in the access to valuables - complex (House)
This is a social task involving several agents – several thieves and a guard. The session ends
either when all the valuables have been collected or found (no matter by whom) or when the
guard has arrested (caught) all the thieves as described in this scenario.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 28/
95

ISTC-CNR is involved in two scenarios (FINDING AND LOOKING For and GUARDS AND THIEVES)
reflecting its consolidated research tradition in two different (both complementary and competing)
approaches to cognitive systems: the bottom-up, sensorimotor approach, and the top-down,
conceptual one.

On the side of the sensory-motor approach, ISTC-CNR will carry out research to build a controller
capable of autonomously learning a repertoire of actions to be used as building blocks to produce
more complex behaviours. The controller will allow a robotic arm (simulated and real) to: reach
different target points in space with the tip of its last segment (“hand”), assume different postures in
space, grasp objects of different shape, move objects in space. The system will accomplish these
actions mainly on the basis of proprioception and information about position and shape of objects in
space: the latter information will be given to the controller “from outside” or it will be collected by
the system through a camera.

On the top-down, conceptual side, ISTC-CNR aims at a complete understanding of the deliberative
or intentional control of action. In particular the research objective is to provide the cognitive
system with (1) different control strategies based on anticipatory mechanisms at different levels of
abstraction (ranging from deliberation and practical reasoning to routinary actions) (2) the capacity
to rely on other cognitive systems on the basis of the prediction of their behavior and (3) the
interplay between deliberation and anticipatory emotions.

3.1 The FINDING AND LOOKING FOR Scenario in detail
ISTC-CNR interpretation of this scenario involves a multi-joint robotic arm (both real and
simulated) endowed with “proprioception” (sensors to detect current reciprocal position of joints in
space, or a method to return similar information on the basis of vision) and, for some tasks, a
camera. The goal of the research is to design and implement controllers capable of building a
repertoire of actions to be used as building blocks to produce more complex behaviours. Each
action of the repertoire is “organised” around a specific anticipated desired state that the system
should be capable of achieving by means of the action itself. The research will also investigate the
possibility of using forward models to enhance the process of learning the actions of the action
repertoire. The research will start to tackle these issues on the basis of the working hypothesis that
natural systems develop (during evolution and/or by interacting with the environment during life) a
basic repertoire of actions that allow them to assume different postures in space with their limbs
(this hypothesis is supported by empirical neuroscientific evidence in humans and other animals).

In order to investigate these issues, ISTC-CNR will work with simulated and real robotic arms. The
reason is that manipulation tasks, contrary to navigation tasks, require the formation of a rich
repertoire of actions in order to control the actuators so as to suitably interact with different, and
possibly “rich”, environment’s states and objects.

Working with robotic arms is much more challenging than working with mobile robots. The reason
is that manipulation requires robotic arms that tend to be mechanically more complicated than
mobile robots. This implies two “costs”:

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 29/
95

1) The economical cost of robotic arms tend to be higher than the cost of mobile robots: given a
level of precision/reliability of the systems considered, prices of robotic arms tend to be about 5 to
10 times higher than mobile robotic “bases”.
2) Difficulties to have mechanically reliable robotic arms (in comparison to mobile robotic basis
with a similar economical costs) given the resources available.

These problems have been solved in two ways:
1) ISTC-CNR started a research collaboration with the project RobotCub, funded by UE
Commission (Unit E5 “Cognition”) that started 1 year ago and will last 4 more years
(http://www.robotcub.org/; the Coordinator of the project is Prof. Giulio Sandini, University of
Genoa). RobotCub has the goal of building an “open source” humanoid robot to be used by the
research community. Part of the budget of RobotCub will be invested to create an infrastructure to
allow other research labs to carry out experiments on the robots produced by the project. ISTC-
CNR will collaborate with the project’s Coordinator (University of Genoa) to test successful
algorithms on the prototypes of humanoid robots that will be designed and built during the project
RobotCub (some prototypes are already available).
2) ISTC-CNR will use a “budget” arm (cost: 5000€) for day-to-day prototyping and pilot testing.
The arm is produced by ActiveMedia Robotics (http://robots.activmedia.com), and has 5 degrees of
freedom plus a gripper (see Figure 22 and the available information at the following website:
http://www.activrobots.com/ACCESSORIES/Pioneerarm.html).

The scenario (environment and tasks accomplished in it) is explained more in detail in the next
section, while the details of the simulated and real robotic arms and cameras will be illustrated in
section 3.3.

3.1.1 The environment and the tasks
The goal of the controller/arm will be twofold:
1) Interacting with the environment to build a repertoire of action: the actions might be the capacity
to reach different target points in space, to assume different postures, to grasp objects having
different shapes, to move objects in space.
2) Using the actions as building blocks to build more complex behaviors (actions) in a hierarchical
fashion, for example: reaching different targets on the basis of different visual percepts, assuming
different postures in correspondence to different objects in space, performing sequential movements
(e.g., first reaching a blue target and then a red target), grasping objects and moving them in space.

3.1.2 Dimensions through which the difficulty of the tasks will be manipulated
The difficulty of the tasks will be tuned on the basis of a number of “dimensions”:
• Static/dynamic targets: in some tasks the targets and objects will be static during each test,

while in some other more difficult tasks the targets will move dynamically during each test (e.g.,
tasks involving tracing a moving target).

• Position of static target(s): in tasks using static targets and objects, the position of the targets
and objects in the environment will be either fixed in all the tests, or variable in different tests
and stable during the single test.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 30/
95

• Shape of objects to grasp: this might range from spheres (that do not require changing the
actions depending on the orientation of the objects) to cubes or bars.

• Number of components of tasks: the task might be simple, for example reaching a single target,
or more articulated, for example reaching two targets in sequence.

3.2 The GUARDS AND THIEVES Scenario in detail
Differently, the GUARDS AND THIEVES scenario has been chosen to represent kinds of problems that
need higher levels of cognition to be solved.
The scenario is composed of two distinct tasks. The former aims to explore the relationships
between higher and lower level of action control in order to provide the cognitive systems both with
the capability of acting in a rational way and of being tuned to the dynamicity and uncertainty of
real environments (see the task Conflict in accessing the valuables - simple). The latter is most
focused on detailing the role of expectations in higher levels of cognition and in social interaction
(see the task Conflict in accessing the valuables - complex).

To meet these different research issues, ISTC-CNR has selected two different simulation
frameworks (see below for clarification). The framework needed to solve the former task is suited
to model a wider range of control strategies and is used to study the interplay between higher and
lower levels of cognition. On the contrary, to solve the latter task, an approach focusing only on the
higher levels of cognition is considered as the most relevant.

3.2.1 The first task
The agent is a simulated robot, whose actions are abstract driving commands. The environment is
the House, as described in D2.1; it is composed of many rooms, corridors and doors (that can
become open or close with predictable dynamics). The agent models the Guard, while it is assumed
that the Thief is controlled by another agent not modelled in a complex way (it will be instead a
simple routine-controlled agent, whose dynamics are predictable).

The doors and the Thief are the main sources of dynamicity of the environment; it is possible to
tune the difficulty of the environment by manipulating the complexity of their behaviour, their
predictability and their number. The main criterion of success for the Guard is to prevent the Thief
(or Thieves) from stealing the valuables. Such items are kept into some locations (that are known to
the Guard). There are also some other static obstacles such as cubes.

The “social” dynamics between Guard and Thief are not investigated here (nor it is assumed
intentionality of the Thief e.g. for anticipating it by using theory of mind, etc.). This work is
intended to be complementary to other partners’ one, e.g. implementing the Thief, and offers an
opportunity for the successive phases of the project, comparison and integration.

The scenario is implemented in the Gazebo/Player/Stage simulator (described later) both in 2D and
in 3D. The choice of 2D or 3D, as well as the reliability of sensors and effectors offer the
opportunity of tuning the difficulty of the tasks.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 31/
95

The House (see Figure 18) has a complex plan (involving many rooms, doors and windows, and a
corridor) in order to offer interesting situations such as hiding places, positions where many rooms
can be spotted, etc..

Figure 18. The House

The Architecture of the Guard
The architecture ISTC-CNR will implement is composed of many components, that are intended to
realize a range of control strategies, including deliberation, means-ends reasoning, and sensorimotor
interactions; moreover, the components interact with each other. The Guard’s control strategy
results, in fact, from an interplay between three distinct capabilities:

• Intention Management: This is the higher level decision process, inspired by the tradition in
practical reasoning (Bratman 1987). This component selects among achievable goals with a
process that takes into consideration their value as well as their satisfiability. The first main
assumption is in fact that goals are selected on the basis of reasons, i.e. beliefs. Some of
these beliefs are in fact explicit expectations, i.e. beliefs about future states (realizing the
goals) depending on the agent actions (as well as on the dynamics of the environment, since
some goals can be self-realizing). The second main assumption is that to an adopted goal
corresponds now the activation of an Intention (intend to do a certain action/plan realizing
the goal), having many additional roles with respect to goals and plans used for achieving
them: intentions direct future processing, with a commitment on certain actions; intentions
prevent inconsistent other intentions to be adopted; intentions provide a criterion of
relevance about how to monitor the environment: the environment is in fact monitored with
respect to intention success. Moreover, Intentions have specific dynamics, e.g. can be
suspended, resumed, abandoned, etc.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 32/
95

• Planning: Once an Intention is adopted, the Planner selects/builds a suitable course of

actions to achieve it, together with a monitoring strategy. There is in fact a functional
continuum between intention adoption and planning, since an intention with no possible
plans for the agent can not be adopted; moreover, an Intention already is about an action or
plan. However, those action/plans are normally very abstracts and have to be partially or
fully specified run-time. Moreover, separating the processes permits to model replanning as
separated from Intention reconsideration: a new plan for the same intention can be run, if the
previous one fails. Planning will be realized by the means-ends process. Plans will thus be
produced in the form of a chain of actions (that will be realized at the lower level) and
expectations (that will be continuously matched with perceptions).

• Actuation and Adaptation: this component is mainly responsible for the actuation of the

plans by the means of sensorimotor interactions. The main components will be (fuzzy based)
action Schemas (Roy 2005, Dresher 1991, Butz 2002, Wolpert and Kawato 1998) that are
selected according to their expected consequences. In fact, schemas predicting better will be
preferred.

The three capabilities are realized by three distinct components, that can however interact with each
other. In many three-layer architectures, deliberate and reactive processes are executed in a separate
way inside the different layers, resulting in different kinds of actuation. The components are thus
not integrated but kept separated. On the contrary, one of the main architectural assumptions is that
any action, even if deliberated and planned, in order to be realized has to be implemented by the
means of low level, sensorimotor interactions.
The first kind of interaction between the components proceeds in a top-down way: after a phase of
goal selection, an intention is passed to the planner; the planner selects a sequence of actions and
expectations to be matched; those actions are realized and adapted by the means of sensorimotor
schemas. However, there are many other possible interactions between the components, since in
principle each process can introduce a pressure over the other ones; for example, an intention in
action can be substituted by a suspended one (perhaps because some of its preconditions were
false), providing that it is very urgent and its conditions are now met.

The roles of anticipation
In the different levels there are different (kinds of) expectations, having different format and roles.
At the lower level expectations are directly matched with perceptions, retaining the sensorimotor
format; moreover, they are often short ranged (describing the result of the next action). At the level
of strategic planning, are also expectations about abstract properties of the environment that are not
directly matched with perception, or at least not with a single observation. These expectations are
often the main reasons to select among goals and plans, and are often long-ranged, describing the
consequences of whole plans and even more. It is even very relevant to notice that at the
deliberative level predictions are normally not matched with perceptions, but with goals, that are not
current states of affairs and perhaps will never be. So, our work aims at modeling a range of
possible roles of anticipation in a control architecture.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 33/
95

The Subtasks
The single agent architecture described here is intended to address two subtasks. It is assumed that
the agent has an already available repertoire of actions (requiring predictive and anticipatory
capabilities). For example, the task “Recognition of the adversary among the moving (or moveable)
objects” is a precondition of all the other tasks into the scenario. It is assumed that the Guard is
already able to recognize the Thief as well as other objects such as doors and rooms (implementing
this capability by the means of simple routines). The complete repertoire of these capabilities (the
base actions) will include features, objects and location recognition, as well as some other prior
information (e.g. about distances or other relations between objects) that will be eventually
introduced depending on the necessities. This approach offers also the opportunity of integrating the
work of other partners addressing these specific capabilities, that is the next important issue of the
Project.

• Having two or more conflicting goals (e.g. protect two places), possibly conflicting, and
arbitrating between them.

The “goal arbitration” issue is mainly the work of the Intention Management component. Since the
environment is dynamic (e.g. opening and closing doors; moving Thief), intention management has
to depend not only on prior knowledge but on expectations. A case study will help illustrating this
point (see Figure 18): the Guard is in the Living Room and it has two goals: control the bathroom
and control the bedroom. If it expects that all the doors are open, it can choose for example to
control first the bathroom. But if it knows that the doors 5 and 7 are closed (and will become open
only after an amount of time that is sufficient to control room B), it can instead choose to control
first room B.
Here the focus is on the peculiarities of intentions, including their roles as “drivers” of the system
(for example avoiding contrasting intentions to be adopted); another very relevant issue is about
their different dynamics: in fact, not all intentions are directly put in play (in act): some of them are
suspended, waiting some conditions to be met; or put in agenda, expecting that some conditions
will be met in the future; etc.

Arbitration is not limited to intention selection; even at the level of Planning there is the issue of
choosing a plan among the suitable ones relying on explicit representations of actions/plans
consequences. There is a problem of arbitration even at the lower level, that is very close to the
behavior selection one. The arbitration is not based on explicitly represented reasons, but it is more
associative. However, expectations play a very relevant role here, too: according to many schema-
based approaches to control (Wolpert and Kawato 1998, Drescher 1991) the success of prediction
of a Schema is the main reason to select it for action control, since it indicates that the Schema is
well attuned to the current situation.

• Integrating different levels of action control (e.g. routinary, reasoning), based on different
kinds of expectations (e.g. implicit, explicit) and being able to arbitrating them by shifting
level of control or by mediating.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 34/
95

This task illustrates the need for a complex three-parts architecture, composed of different modules
and capabilities. Our main questions are: How are high-level “decisions” realized by low-level
“behaviors”? and: How can the control come back from low to high level in case of necessity, e.g.
errors?

In real cases there is a continue interplay and shift of control between the levels of control. Consider
for example that the Guard is in the living room and has two goals: control the bathroom and
control the bedroom. It chooses to control first the bathroom (perhaps because it is closer and it
expects all the doors are open). In order to realize its Intention, it plans a sequence of actions that
include passing door 5. If door 5 is closed (assuming that the Guard did not expect this and can only
verify this by trying to open it), this is a case of a failure at the level of actuation: it the Guard is not
able to perform a given action that belongs to an intended plan, and a new plan has to be produced.
This recover can be done by producing a new plan that includes passing doors 4 and 7. If door 4 is
close, too, this is a different kind of failure, since it is now impossible to realize any kind of plan for
the given Intention. Assuming that there is no subgoal possible (such as: open one of the doors),
there is now the need for a new Intention (e.g. control the bedroom). Consider also that in this kind
of situation some structures for maintaining knowledge are used in order to avoid the Guard to
continuously move from door 4 to 5 and vice versa; consistently with our approach, only
information that is relevant for the achievement of the goals is stored.

There are also possible conflicts between actions that are already in play and other goals, permitting
the agent to exploit opportunities. Consider in the previous example another situation: if the Guard
is (successfully) executing the plan to go to through doors 4 and 7 (the goal is to reach the
bathroom), it can spot the Thief near door 6, in the office. At this point, it should not continue to
pursue its original goal, but there should be Intention reconsideration (maybe leading to select a
new goal, capture (touch) the Thief). This is an example of Intention reconsideration that is not due
to a failure but to an opportunity.

Moreover, there is the possibility to plan actions that are impossible to realize for the agent (but of
course this was not known during planning); a simple example is that the agent is too large to pass
through a door. This situation again leads to re-planning, but for a different reason: not a failed
precondition (a closed door) but a failed action, i.e. the expected consequences of one action are not
realized.

A similar case of failed actions are actions that are not in the action repertoire of the agent: this
offers the opportunity of asking other agents to perform parts of a plan, thus introducing social
elements that is part of what will be addressed in the second task.

3.2.2 The second task
In order to deal with this task, the environment is populated with classes of unanimated objects
(foods, fire, dangerous areas, walls, doors, path, tree, collection points, houses), and animated
entities, e.g. the agents (Guards and Thieves).
The achievement goals between thieves are to obtain booties, both in an autonomous way and in
organised coalitions. Differently, a guard has the goal to patrol areas and catch thieves. Thieves can

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 35/
95

be caught when they moves close to the guard. The general layout of the environment layout is
depicted in the following figure.

Figure 19 The environment layout of the second task.

The architecture
The core of the Belief-Desire-Intention architecture that is adopted in this task is described briefly
in Section 3.4.2. Starting from the traditional approach to the BDI systems, ISTC-CNR is
developing an architecture for dealing with expectations (and the emotional attitudes linked to
them: relief, fear, surprise, etc.), learning and more complex cooperative and competitive attitudes
(trust, reliance, delegation, help, etc.). At the top of the JADE-Jadex architecture, a new layer will
be added, explicitly built to deal with tasks about agents with affective behaviours and social
cooperation/competition.

Handling explicit expectations is a necessary capability for agents that have to predict both events
in the world and the actions of their peers and that are to be endowed with emotional reactions to
occurring events. Expectation lifecycle will be analysed from the origin (e.g. analyzing sources of
expectation) to the final states (when expectation is tested, though perception, with the real world
state, and possibly it is updated).

Expectations will enter the reasoning cycle not only as a simple value, but as “first class objects”
modifying the traditional Reaction-Deliberation mechanism (which relies only on belief formulae
i.e. logic expressions about beliefs) and including dynamic evaluation of expectations.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 36/
95

Since expectations have to be tested continually with the world, a component will be built to update
expectations using the feedback signals filtered from the sensors. Including the expectations in the
deliberation process, is a means to providing it with learning capabilities. In fact the more accurate
the expectations are, the more the agents will be able to behave in the environment appropriately.

An emotion manager will be a very relevant component of the system. It is, on the model of the
relationships between expectations and emotional attitudes reported in D5.1. A mismatch evaluator
and an emotion manager will be adopted to deal with the last part of expectation lifecycle. On the
basis of the (mis)matches between agent’s expectations and the real perceived data, it is possible to
enable both the triggered emotions (with their quantitative aspects) and the affective consequences
on the agent’s behaviour.

Another important component/function of the system is the plan recognizer. Assuming a shared
knowledge about plans, agents can make plan recognition, in other words they can predict which
action will be performed by an agent observed during action execution. Moreover, agents should be
able to expect what the final, long term, state will be reached as the final goal state.

Finally abstract internal representations, through goal decomposition trees, are defined for the
Action Observer components. Each goal will be stored in terms of triggered plans, and each of these
plans in terms of sub-trees, where the leaves coincide with self contained actions. These
representations, used for the schema-based recognition of other agent actions, contain only
perceivable and observable data received from the world.

The subtasks
In what follows three subtasks are described highlighting the relevant issues.

• Deliberating with expectations and coping with unexpected events

In this subtask expectations will be matched-tested with the observable world state, through
evaluation of data perceived from sensors. The agent will not only evaluate how accurate is the
available prediction on the basis of feedback signals, but will also detect differences between what
is expected and what is true in the real world. A level of surprise, for example, can be considered in
terms of testing expectations in the world and quantifying the eventual mismatch. In this sense,
surprise is a function of both (un)expectedness and mismatch – grade, directly appraised upon
data’s features.
Starting from some definitions of a set of emotions (surprise, fear, relief, disappointment and so on,
see D5.1) this subtask is also intended to explore the consequences of the emotional attitudes.
An example about the use of expectations in the specific subtask is when a thief is expecting to find
a booty in a specific place; on the basis of this expectation it decides (deliberates) to move itself
towards that place of the world, then it is able to evaluate if its expectation matches with the
perceived state of the world. On the basis of the matching result it should be able to feel different
possible emotions like surprise (if the matching result is up a given subjective threshold). At the
same way the thief could experience a relief emotion if it was expecting a guard following it (on the

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 37/
95

basis of reasoning, indirect signals from the world, etc.) and it perceives from the real world the
missing of the guard. And so on with other relationships between expectations and emotions.

ISTC-CNR will analyze both short and long term effects about emotions. As for the former kind of
effects, we can say that, for example, surprised agents are characterized by a peculiar expressive
behaviour (with social and communicative implications), they experience a momentary lapse in the
control of execution and mobilize their computational resources. Sensors and any kind of available
resources are immediately directed to the source of surprise (e.g. focusing on unexpected entities
and objects) beginning short-term epistemic actions.
Analogously, for the long terms effects, again in the surprise example, there could be a general
increase of the level of attention. Agents allocate more resources to epistemic actions and attentive
processes, with direct effects in reducing promptness and speediness and side effects in bodily
reactions, as energy consumption. Surprise has a direct effect on the level of agents’ cautiousness.
This can reflect on attentive capabilities (e.g. cautious agent engages in belief revision and increases
at the same time control activities), and self-trust (e.g. prudence about expectations and uncertain
beliefs, planning and intention revision).

• Plan-based prediction of the others’ behaviour

More social in nature, this subtask requires mechanisms and capabilities to recognize, through
observation or explicit communication, the intentions of other agents.

As in the classical approach to planning and plan recognition, the notion of action as step of a plan
will be introduced to consider plans as procedural, activity-based processes, made by sequences of
actions. Plans are viewed as flow charts where actions are the coarse grained nodes.

Agents will be provided with a structured knowledge about actions and plans and other contextual
knowledge (agent’s roles, world rules, etc.) to identify actions and infer the associated plans. Agents
will be able to anticipate, with a reasonable gap of ignorance, a small set of action’s effects. (e.g.
seeing a Thief moving towards a booty, the Guard recognizes the plan “pick_up_booty” that has as
main goal the result “to have booty”).
In general, during action execution modifications will be made in the world: Generally a subset of
these modifications can be captured in a window of observability where agents can recognize and
attribute actions to specific plans (e.g. seeing a Thief moving and bringing an object allows other
agents to deduce that the Thief is carrying the booty to the haunt).

Sometimes recognized actions can be included in more than a plan (there is an ambiguity for the
plan recognition): in these cases recognizing agents has different possibilities:

1) waiting for the next action, hoping that it will disambiguate the plan to recognize;
2) increasing its own knowledge useful for the recognizing plan; this could mean to increase

the attentive processes about specific parts of the world. In this case, the agent has to
increase the computational resources allocated to find elements allowing action recognition
and evaluating them in the context where the actions are performed (e.g. perceiving an agent
with a key on a path at the end of which there is a door could be used to infer that the agent

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 38/
95

has to pursue the next action close_door – if the door is open - or open_door – if the door is
closed). Agents try to match such frame with the sensor data about other agents (e.g. if they
are carrying object) and the environment (e.g. if there is an obstacle near to them). A
“schema based frame” is built to evaluate contextual conditions against world knowledge.

3) recognizing agents evaluating some further contextual conditions like roles and reputation
(e.g. a Guard near a Tree is in patrol_tree action, but a Thief near a Tree is
looking_for_booty;).

4) recognizing agents using explicit communication: in favourable contexts message exchange
can be involved in others behaviour prediction. Agents can perform a direct solicit-response
messaging in order to directly know intentions (e.g. gangs of Thieves can natively
communicate and share not only knowledge but also intentions).

• Reliance, help, obstacle, delegation and trust both for competition and cooperation by

anticipating other’s behaviour (e.g. by removing/putting obstacles or doing/hampering part
of other’s work, asking another one for help).

Once agents are able to predict other agents actions, recognize intentions and foresee future world
states, they can behave in terms of anticipated world state distinguishing between positive and
negative social interference (Castelfranchi 1998): this enables agents in reading the world in terms
of opportunity/chances or obstacles.
Agents are able to engage in cooperation (exploiting the result of other agents’ actions to enhance
individual goals or to obtain a common goal) or competition (hindering and blocking other agents
actions to prevent other agents to reach the same goal).

Predicting other agents’ plans and their consequences can trigger intention revision in the agent.
Agents can activate a meta–level reasoning to build an expectation about other agents actions. As a
consequence, an agent can do reliance on another agent’s action for example deciding of engage in
direct action because someone else will realise the goal it is pursuing. The agent forecasts result
states about other agent intentions or delegate without explicit request.
Let us show some examples. First of all we introduce the notion of reliance: Agent-a is relying on
agent-b if there is at least an action of agent-b that is useful for agent-a and it decides to use that
action in its own plan while agent-b is performing that action (Falcone and Castelfranchi 1998).

Cooperative Reliance:

• Guards patrol different areas, coordinating themselves.
o Guard_1 has to patrol zone_a and zone_b. Guard_2 has to patrol zone_b and zone_c.

(zone_b can be patrolled by both guard).
o Guard_1 is going to patrol zona_b; Guard_2 remains in Zone_c, even if he would

deliberate (in absence of the other guard’s action) to change zone, until Guard_1 is in
Zone_b.

• A special case is given by reliance on world object or events:

o the Thief going to pick the booth makes reliance on the sun lighting the path on
which it has to go on;

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 39/
95

o if there is an obstacle between the thief and the guard, the thief could make explicit
reliance on the obstacle for going to pick up objects (reliance for competition).

Competition:

• Thief_1 is going to eat Food_1. Thief_1 see Thief_2 going to Food_1 too. Thief_1
anticipates that Thief_2 will arrive to Food before it without external modifications of the
situation. Thief_1 can choose between the plans:

o To abort the Goal, Thief_1 drops the Goal when considers it impossible to reach
(this decision permits to Thief_1 to save energy);

o To choose a shortest path in order to anticipate Thief2 with respect to the Food_1;
o To create an obstacle to Thief_2 (e.g. close a door and invalidate preconditions for

action).

Cases of Help:

• Dropping obstacles for the others: e.g. Help Thief2 to realize precondition for the next
action);

o Suppose the case of thief1 having the plan of collecting tool1 and tool2 before going
to the house of the booth. While thief1 is going to take tool1, thief2 could take tool2
and make it available for thief1.

3.3 FINDING AND LOOKING FOR Scenario
As mentioned in section 3.1, the FINDING AND LOOKING FOR scenario will use simulated 2D and 3D
robotic arms and cameras, and real 3D robotic arms.

3.3.1 The simulated robot

Simulated 2D robotic arm. The 2D simulated robotic arm moves on a horizontal plane (Figure 20
shows a snapshot of the simulator). The arm can be composed of two or more segments and the
same number of degrees of freedom. The simulator allows simulating only kinematics of arms
without dynamics, or arms with more realistic dynamics. The controller issues commands to the
arms in one of the following ways (the effects of these choices might be an issue of research): a)
torques exerted by the motors; b) desired variation of angles between the arm’s segments; c) desired
angles of the arm’s segments.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 40/
95

Figure 20 The simulator of the 2D arm. Left: a 2D arm with 3 segments while engaged in learning to achieve

different targets in a reaching task (bottom left: error plot). Right: the interface of the simulator reporting a
graphic representation of a neural-network controller.

Simulated 3D robotic arm. The 3D simulated robotic arm is composed of two segments, and
possibly a gripper, with the following degrees of freedom: shoulder 3, elbow 1, wrist 2, gripper 2 (at
least at the beginning, research will focus on tasks not requiring the gripper for grasping, see section
3.1). Commands are issued to the arm in ways similarly to what is done within the 2D simulator
(torques, angles’ variation, desired angles). The simulator of the 3D arm is based on “ODE - Open
Dynamic Engine” (http://ode.org/), a free software licensed under the license “GNU GPL”. ODE is
a platform independent C++ library for simulating articulated rigid body dynamics, moving objects,
ground vehicles, and robots with limbs. It supports advanced joints, contacts with friction, and
built-in collision detection.

Figure 21: The simulator interface of the 3D robotic arm and the arm

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 41/
95

Simulated camera. At the beginning ISTC-CNR will mainly work on the basis of proprioception
and simplified simulated cameras, for example “retinas” that return “black and white” gross images
(or more than one “overlapping” images if different colors are needed). Simplified simulated
cameras (or “camera-like” abstract information) will suffice because research will mainly focus on
organization of motor behaviour.

3.3.2 The real robot
The robotic arm used is a Pioneer armTM, produced by ActiveMedia Robotics
(http://robots.activmedia.com), shown in Figure 22. Pioneer arm is a relatively low-cost arm for use
in research and education. It has 5 degree-of-freedom and holds a gripper. The arm is driven by six,
reversible 5v DC open-loop servo motors, and can reach up to 80 cm from the center of its rotating
base to the tip of its closed fingers.

The arm can be controlled through a computer connected to it via a TCP socket. The whole system
uses a client-server architecture: the robot hosts the server while the computer hosts the client
applications. The robot’s server (operating system) manages all the low-level details of the robot.
Client applications can issue commands to the robot through API functions collected in a set of
libraries (“ArAKIn”). These API functions can be directly used in custom C++ programs compiled
and run either under Windows or Linux platforms.

Figure 22: The Pioneer 3 robotic armTM developed by MobileRobotics.

The experiments considered here will mimic proprioception sensors’ readings on the basis of the
commands issued to the arm (e.g., desired positions or angles of joints) or positions of the arm’s
joints in space inferred through an external camera.

Real cameras: ISTC-CNR plans to carry out integration work with other partners of MindRACES
that are focusing on problems regarding vision and attention (e.g., IDISA and LUCS), in order to
study eye-hand coordination problems. For this reason, it will adopt the hardware/software
solutions developed by those partners.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 42/
95

3.4 GUARDS AND THIEVES: the simulation frameworks
As for the second scenario, ISTC-CNR has adopted the framework AKIRA for the first task and
Jadex for the second one.

3.4.1 AKIRA
AKIRA permits a versatile management of the interactions among the components, by the means of
both symbolic and connectionist dynamics. Differently from standard cognitive architectures such
as SOAR (Rosenbloom et al. 1992) and ACT-R (Anderson and Lebiere 1988), where components
and modules are cognitively impenetrable, in AKIRA it is possible to represent both symbolic and
energetic exchanges between them (such as activation and inhibition, competition for limited
resources, etc.). Moreover, according to our needs, all components and modules include both
perceptual and motor processes; as stated earlier, they only differ for the degree of abstraction of the
representation and control strategies they use.

AKIRA (http://www.akira-project.org/) is an open-source, C++ multithread framework that
integrates features of Multi Agent Systems and Pandemonium (Jackson 1987); it has been
developed by ISTC-CNR and NOZE and it has already been tested for many tasks (e.g. Pezzulo and
Calvi 2005, Pezzulo and Calvi 2005b, Pezzulo and Calvi 2005c).
According to the Pandemonium metaphor, the kernel is called Pandemonium and the agents are
called Daemons. Here we introduce briefly its main components.

The Pandemonium. The Pandemonium is the system kernel, the main process that instances the
threads that are necessary to execute the Daemons (Agents) and that executes all the monitoring and
control operations over the single components. Its parameters are configurable at start-up through
an XML configuration file; it contains an XML description of: available memory; max number of
executable threads; some features for Agents execution (e.g. priority, lifetime, resources); other
system properties (garbage collecting, facilities for system and Agents debugging). The
Pandemonium Cycle monitors the activity of all the Daemons (including exceptions) and is
responsible for many system procedures, e.g. garbage collecting, showing the statistics for Agents,
XML stream and system energy.

The Daemons. The Daemons are the atomic computational elements, each having its own thread
and carrying its own code, that are initialized and executed by the Pandemonium during the system
lifetime. Daemons are hybrid, having both a symbolic component (the carried operation) and a
connectionist one (energetic attributes regulating the dynamics of the system). In fact, Daemons
can share and spread energy throught an Energetic Network; moreover, a centralized pool of
resources, the Energy Pool, gives an upper bound to the total amount of resources available for the
computation, thus introducting a competition for limited resources among the Daemons. Figure 23
provides an intuitive picture of the concurrency model. The activation of each Daemon is calculated
by an energetic network affording energetic exchanges such as spreading activation. Activation
becomes priority of the Daemons’ threads, driving their sequences of activation: more active
Daemons can act more. Thus, Daemons are represented both as nodes (circles in the grid on the
bottom), that exchange activation (via the links), and as agents (circles in the cloud on the top). The
priority of the agents (their height in the cloud) depends on the activation of the correspondent

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 43/
95

nodes. Daemons also share a limited amount of energy, that is represented by a centralized resurce
called the Energy Pool.

Figure 23. The two aspects of AKIRA

Writing Daemons in AKIRA. User-defined Agents inherit from an abstract Daemon declaration as
well as from many pre-defined prototypes and models. Figure 24 shows the Agents generation
process: the programmer extends some Daemon models; the Agents are dynamically managed by
the Pandemonium and start their lifecycle as threads. The semantic imposed by the programmer to
the Agents is specified in the init() and execute() functions. They are called by the framework as
part of the run method and used as entry point for each Agent thread. Exiting from run means a
regular termination of the current thread with the destruction of everything in its local space.

Figure 24. The Daemons generation process

Message Passing. In AKIRA three message passing mechanisms are available.

• The Blackboard (XML Stream) is a shared data structure divided into blocks containing
AXL (AKIRA XML Language, a custom KQML-like data exchange language) packets,
where the messages are concurrently written and read.

• AkiraGenericObjectFactory allows developers to create, set, get and destroy on the fly
shared objects of any kind; it is the slower mechanism.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 44/
95

• AkiraGlobalVariableFactory is limited to shared variables of scalar type. All the
mechanisms have a templatized mutual exclusion policy to guarantee thread safe and
consistent access to all data.

Figure 25 illustrates the main components of AKIRA: the Daemons, sharing energy and spreading it
via the energy network; the messaging infrastructure.

Figure 25. The components of AKIRA

In the design of the three-parts architecture of the Guard, many Daemons will be used. As a first
approximation, each component will be implemented by using a single Daemon; they will
communicate via the Blackboard and the control will be prioritized by setting different energetic
values between them (e.g. Intention Management will have higher energetic resources). In
successive steps beliefs, goals, plans and schemas will be implemented using many interacting
Daemons, in order to permit more complex dynamics between them. For example, conflicting goals
or schemas can be represented by using different Daemons, with different energetic values
representing their urgency.

Requirements of the Guard Architecture
According to our architectural needs, the selected framework has to furnish three main features:

1. the possibility to design and implement different kinds of cognitive functions and
capabilities, ranging from deliberative processes to routinary actions;

2. the possibility to integrate them and to model the dynamics of their interactions;
3. furnish the interface to a suitable simulator.

As for the first point, AKIRA includes a fuzzy logic library that has been used for implementing a
schema mechanism (Pezzulo and Calvi 2005b) as well as a scripting language for treating domain
knowledge (beliefs) and goals, including deliberation and means-ends analysis (Pezzulo and
Calvi2005c). These facilities have been individuated as the main requirements for implementing the
components of the Guard architecture.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 45/
95

As for the second point, AKIRA agents can be exploited for embedding the different kinds of
processes (deliberate, means-ends, schemas). AKIRA Agents can communicate through a
Blackboard and share energetic resources, influencing the priority of the related processes and
making their representations more or less available to the other ones. The messaging infrastructure
(that is XML based) will be used for example for representing the passage of a goal from the
deliberative phase to actuation. The energetic dynamics of the Agents will be the basis for
prioritization of control; for example, the different dynamics of slow-and-accurate processes (such
as deliberation or strategic planning) or faster ones such as sensorimotor interactions.

Finally, AKIRA is interfaced with the simulator ISTC-CNR has selected for this task, that is
described in the following paragraph.

The Environment and Physical Simulator
ISTC-CNR has also adopted the simulator Gazebo/Stage/Player
(http://playerstage.sourceforge.net/), developed at the University of South California and used by a
large number of researchers worldwide. The simulator has realistic physics (based on ODE) and
includes three components:

• Player: Player is a device server that provides a powerful, flexible interface to a variety of
sensors and actuators (e.g., robots). Because Player uses a TCP socket-based client/server
model, robot control programs can be written in programming language and can execute on
any computer with network connectivity to the robot

• Stage: Stage is a scaleable multiple robot simulator; it simulates a population of mobile
robots moving in and sensing a two-dimensional bitmapped environment, controlled through
Player. Various sensor models are provided, including sonar, scanning laser rangefinder,
pan-tilt-zoom camera with color blob detection and odometry.

• Gazebo: Gazebo is a 3D, dynamic, multi-robot simulator. Whereas Stage is intended to
simulate the behavior of very large populations of robots with moderate fidelity, Gazebo
simulates the behavior of small populations of robots (less than 10) with high fidelity.

Software developed with Gazebo/Stage/Player can easily be ported into real robots, since many
interfaces are furnished for many of them, including the Pioneer 3.

3.4.2 Jadex
JADE (Java Agent Development Framework; http://jade.tilab.com/index.html) is a Multi Agent
Systems framework fully implemented in Java language. It simplifies the design of multi-agent
systems through a middle-ware that complies with transport end-to-end interworking,
interoperability and communication like FIPA protocols. The agent platform can be distributed
across machines (which not even need to share the same OS) and the configuration can be
controlled via a remote interfaces. The configuration can be even changed at run-time by moving
agents between agent containers located across networks.

Jadex (http://sourceforge.net/projects/jadex/) stands for "JADE extension" and represents a Belief
Desire Intention (BDI) extension for the JADE multi-agent platform.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 46/
95

Jadex incorporates the traditional BDI model into JADE agents, by introducing Beliefs, Goals and
Plans as first class objects, that can be created and manipulated inside the agent. In Jadex, agents
have beliefs, which can be any kind of Java object and are stored in a belief base. Goals represent
the concrete motivations (e.g. states to be achieved) that influence an agent’s behaviour. To achieve
its goals the agent executes plans, which are procedural recipes coded in Java.

Figure 26 Jadex overall architecture.

Jadex agents reacts to incoming messages and internal events, and deliberate about their goals. To
handle messages and events, and to achieve its goals, the agent selects and executes plans. The
current beliefs influence the deliberation process of the agent, and the plans may change the current
beliefs while they are executed. Changed beliefs in turn may cause internal events, which may lead
to the adoption of new goals and the execution of further plans.

Jadex developed an higher level, adaptable, deliberation strategy shifting deliberation policies from
application to architecture level. Systematic information and events establish dynamically,
transparently to the agent programmer, specific interrelationships between Goals. The system
automatically detects interdependencies at runtime reorganizing on the fly goal priorities and
preserving a consistent mental state. The mechanism is realized through the management of fully
dynamic network of inhibition arcs between agent’s Goal, where instances of each Goal is limited

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 47/
95

by an upper bound cardinality value (Pokahr et al. 2005a and 2005b). In essence Inhibition arcs
allows to define explicit negative contribution relationship between Goals.

3.5 Conclusions
ISTC-CNR has prepared the experimental setups, both real and simulated, in order to carry out the
tasks related to the FINDING AND LOOKING FOR scenario. The setups are particularly suited to tackle
the problem of building action repertoires and using them to produce more complex behaviours.
The hardware setup is based on a robotic Pioneer arm controlled by a computer and by prototypes
of humanoid robots made available by the EU funded project RobotCub at Genova University (a
specific research collaboration has been started with this University). The simulated setup is based
on two 2D and 3D customized C++ simulators that allow very fast simulations, particularly useful
for simulations that involve computationally heavy learning processes.

ISTC-CNR has also done all preparatory work to start with experiments in the two tasks of the
GUARDS AND THIEVES scenario. The architecture suited for the first task is composed of three parts,
and it is intended to address three tasks related to action control and its shift between the levels. The
methodology is simulative, but the constraints given by the simulator (e.g. realistic physics based on
ODE) make the results suitable for real robotic domains. The architecture suited for the second
tasks is focused on the role of expectations in higher levels of cognition such as deliberative
reflection; the simulation setup is ready to begin experimentations.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 48/
95

4 LUCS

ANTICIPATION IN A DYNAMIC WORLD

 The fish catching game (Game Room)
In the fish catching game, the movement of the targets is very regular but there are two types
of predictions that can be made:
• the path of the fish
• the time when it will open its mouth.
When the scene is viewed from different angles, the system need to predict the movements of
the fish regardless of from where it is looking at it. Ideally, the learned model should allow for
quick relearning (or reparameterization) when the viewing angle changes.

 The marble run game (Game Room)
In the marble run, the movement is again very regular, but the different components of the
game can be rearranged to produce different paths for the marble. These scenes combine the
continuous dynamics of the ball with a compositional structure. This allows for generalization
between different configurations of the elements of the run.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 49/
95

 Learning the two games at the same time (Game Room)

To add some complexity to the previous tasks, the cognitive system could simultaneously look
at and learn the different games. This makes the learning context sensitive. It also makes it
possible to study how the current game can be used to prime the relevant features of the visual
scene that should be used for anticipation. Ideally, the system should learn that there are two
different games by itself by detecting the relevant contexts. The only given goal of the system
will be to anticipate the state (e. g. location and velocity) of some predefined objects in the
scene. By simulating a delay in the perceptual system (as would result if a robot was used), it
becomes necessary to predict the behaviour of the moving object for tracking to occur.

GUARDS AND THIEVES

 Conflict in the access to valuables - complex (House)

This is a social task involving several agents – several thieves and a guard. The session ends
either when all the valuables have been collected or found (no matter by whom) or when the
guard has arrested (caught) all the thieves as described in this scenario.

4.1 Robots

For the game room scenario with several interacting robots, LUCS has built six robots that can be
controlled through Bluetooth from a remote computer (Figure 27a). An overhead camera is used to
track the positions of the individual robots (Figure 27b). Obstacles (bricks) and other objects can be
placed within the game area to form rooms when necessary.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 50/
95

For the control of the robots, a basic set of real-time path planning abilities have been implemented
using a hybrid method based on A* in a grid representations combined with Bezier spline
representations of paths. The method will be used as basis for anticipatory navigation through the
environment and different levels of reactive, planning and anticipatory abilities can be switched on
or off.

Figure 27 (a) The robots used for the game room scenario. (b) The overhead camera view of the room

environment before processing. There is one robot and two obstacles present.

In addition, LUCS has developed a 2D simulator for the environment that is used for off-line testing
of algorithms. This simulator will also be used by the robots to simulate the behavior of other robots
during navigation and planning.

To identify the positions and orientations of the individual robots, the overhead camera (Figure 28)
delivers a continuous stream of jpeg encoded images over TCP/IP. The image of the environment is
first transformed into a rectangular shape and then color corrected before the robots and obstacles
are identified. The environment itself is represented in a grid while the robots are tracked to
continuous locations and orientations. The amount of information that is available to each robot can
be controlled to simulate a limited field of view.

Figure 28 The AXIS 2130PTZ camera used for visual tracking of the robots in the game room scenario and

for active tracking of moving marbles and fishes in the marble and fish games.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 51/
95

In addition to the six small robots, LUCS has designed a prototype for a larger (but still small) robot
(Figure 29). This robot will eventually be used to carry an active camera system, which will be used
to track targets in a dynamical environment. The advantage of using a robot over a static camera is
that the effects of self-motion and visual perspective must be handled as well as the dynamics of the
environment. The robot will also be equipped with a simple arm to allow it to interact with moving
objects such as a ball or the fished in the fish game. The robot uses Mac Mini as its embedded
computer and uses Ikaros (see below) for control and communication with a remote computer
through wireless network.

Figure 29 The MiniBot, a prototype mobile robot which will be used to move the camera while it is tracking

dynamic scenes like the fish game and marble game.

4.2 Video Recordings
LUCS has recorded video clips of several classes of dynamical scenes. Movies of the two scenes
(fish, Figure 30, and marbles, Figure 31) have been recorded from five different angles and coded
in a number or formats: (1) MPEG at a resolution of 640x480 pixels, 25 frames per second. This is
the raw format to use when the complete visual recognition and anticipation task is addressed. (2)
MPEG at a lower resolution of 320x240 pixels, 5 frames per second. This format is used as
reference for the raw tracking data when a lower bit rate is desired. (3) Raw tracking data
(coordinates and state) for the target object in each movie at 25 values per second together with a
static description of the scene.

Fish Game Data
The raw tracking data for the fish game consist of the x and y coordinate of the target fish in the
image and a third component that identifies whether the mouth of the fish is open. This data are be
coded in ASCII files with four columns of numerical data. Since the scene is cyclic, then each data
file contains one cycle with typically lasts less than 5 seconds. To allow generalization between
different views the scene has been recorded five times from different viewing angles. The location
of the camera relative to the center of the game is also supplied.

Marbe Run Data

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 52/
95

The raw tracking data for the marble game consists of the x and y coordinate of the marble in the
image and third component that identifies whether the mouth of the fish is open. This data are coded
in ASCII files with four columns of numerical data. The tracked data contains the position of the
marble from the time that it enters the scene until it disappears.

An additional file will contain a description of the elements of the scene separate from the position
of the marble. The two coordinates for each element indicate the start and end of the marble run
through the element. For elements without clear locations of this kind, both coordinates code the
center of the element

There are five different scenes with different arrangements of the elements. Two of these scenes
contains elements that partially occludes the pathway of the marble. Each scene has been recorded
from five different visual angles. The location of the camera relative to the center of the game is
also supplied.

Figure 30 Still image from the fish video clip.

Figure 31 Different simple marble run games with the same elements arranged into different dynamical
scenes. The rightmost image shows the detected anchor points in the image that are used for the scene

description.

4.3 Software Architecture
All implementations are done using the Ikaros framework (http://www.lucs.lu.se/Ikaros). The main
components of the Ikaros systems are: (1) A platform independent simulation kernel currently
running under Window, Linux and Mac OS X, (2) A set of computational modules implementing

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 53/
95

different cognitive mechanisms or algorithms, (3) a set of I/O modules for interfacing with data files
and peripheral such as robots or video cameras, (4) tools for building systems of interconnected
models specified using an XML-based format, (5) a plug-in architecture that allows new models to
be easily added to the system.

The system makes it easy to develop cognitive components that can be used in many different
models and is thus ideal for comparison between different cognitive architectures or different
combinations of cognitive modules. It also makes it possible to use many visual processing modules
that have already been developed for Ikaros. There are currently over 100 modules in the system
ranging from I/O to learning and perception. The adoption of several web protocols makes it easy
for Ikaros to communicate also with other implementations of cognitive architectures in a client-
server setting.

Figure 32 Overview of the Ikaros system. The system allows flexible development of complex cognitive systems
of interacting modules implementing different mechanism (dark green). The processes can be monitored from

the web based interface using a browser (light green), which communicates through a WebUI module (red). The
kernel (blue) controls the execution of the individual modules and the communication between them. Several

Ikaros processes, possibly running on different computers, can communicate over TCP/IP.

Ikaros has been extended with a web server that interacts with a web browser to show the state of a
running Ikaros process (Figure 33 and Figure 34). The browser side of the viewer combines
JavaScript and CSS with SVG rendering of images and graphs. A plug in interface similar to that
used for Ikaros modules has been developed that allows arbitrary visual elements specified in SVG.
The web view interface is compatible with Firefox 1.5, Camino and browsers using Adobe SVG 3.0
plugin (e.g. Internet Explorer and Safari).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 54/
95

Figure 33 The attention model of Itti & Koch running in Ikaros. The visualization is shown in the Web client

running on Mac OS X

Figure 34 The path planning algorithms for the game room robots visualized in the Ikaros Web client running
in Deer Park Alpha on Windows.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 55/
95

5 NBU

FINDING AND LOOKING FOR

 Finding a specific object (Game Room)
The purpose of this task is to find a specific object in the environment (e.g. a red cube). The
degree of detail in the description must be sufficient to define unambiguously a single object,
not a class of similar ones. For example “red cube” is to be used in the case when there is a
single red cube, and “big red cube” if there are several red cubes with different sizes and only
one of them is big.

 Finding members of a class of objects by class description (Game Room)
The purpose of this task is to find any object matching some general or partial description (for
example “find a cube” or “find a red object”). As in the previous case, prediction or
anticipation can be based on previous experience, recurring spatial relations, etc.

 Looking for an object in the House (House)
This task is placed in the House environment. Coloured light signals might be positioned
above/aside passages between rooms. These lights signal if the passage is open or closed, and
might have periodic behaviours. In this task the robot’s goal is to find an object that is hidden
in one of the rooms in the shortest time or using the shortest way. The level of detail in the
object’s description may vary. In the case of class-definitions of the target, the purpose of the
robot is to find any object that matches the given description.

In some conditions, the target's location is probabilistically biased towards certain locations
(e.g. red cubes tend to stand on yellow cubes, although not always, or to stay in some rooms).

GUARDS AND THIEVES
 Conflict in accessing the valuables - simple (House)

This task involves two agents – one thief and one guard. In the beginning several valuables are
hidden in at least two different places or there are several accesses to the hidden place, in
order to make the guard’s task non-trivial. The session ends either when the thief has collected
or found all the valuables or when the guard has arrested the thief either by blocking him or
by touching him.

 Conflict in the access to valuables - complex (House)
This is a social task involving several agents – several thieves and a guard. The session ends
either when all the valuables have been collected or found (no matter by whom) or when the
guard has arrested (caught) all the thieves as described in this scenario.
In addition to all the problems listed before this task implies that the thieves should be able to
distinguish between guards (danger) and rivals/fellows (competition/cooperation).

 Coordination in accessing the valuables - several thieves (House)
This is a social task involving several agents – several thieves (at least two). Some (types of)

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 56/
95

objects are considered to be valuable and each player aims to find them all. Thus the
participants have to play the roles both of the thief and the guard from previous tasks. If one
thief blocks another (the way the guardian could block the thief) the first takes the valuable
from the second if currently it is carrying any. The session ends once a player has
collected/found all the valuables or after some fixed amount of time.

NBU approaches the tasks by creating agents that are capable of anticipation by making analogies
with previously experienced episodes. For example, the agent could look for the hidden object in
places where it was hidden in analogous situations, or in places analogous to the ones where
analogous objects were hidden on previous occasions. Moreover, the analogies might be with
respect to the objective spatial configuration of objects and rooms, or with respect to another
agent’s (a guard’s or a thief’s) previous behaviour, e.g. agent1 has previously hidden the bone
behind the door of room1, and agent2 has hidden it behind the left most cube in the corner of
room2, now being in room3 and knowing that agent2 has hidden the bone, our robot could
anticipate by analogy that the bone is behind the left most ball in the corner of that room.

For implementing such a robot capabilities NBU will use the DUAL cognitive architecture and the
AMBR model of analogy-making developed on its bases. The first step will be to use a simulated
(virtual) environment (WEBOTS) to model the behaviour of the agents and the second one will be
to use real robots (AIBO and Pioneer).

5.1 Physical environment
The scenario will be implemented by using AIBO robots (see Figure 35a) and/or Pioneer 3DX
robots (see Figure 35b) controlled via wireless (WiFi) network remotely by a computer running all
the required modules (see Figure 39). Thus the required processing power will be offloaded from
the robot.

For the first task the hidden objects will most frequently be bones, but could be any other object.
The objects in the room will be cubes and balls of various colours and the bone could be hidden
behind any of them (see Figure 36). The AIBO dogs will go behind the corresponding object and if
the bone is there they will collect it, otherwise they will fail or continue to search. When the Pioneer
robot is used it will be able to grasp the corresponding front object with its arm and thus make the
hidden object visible (if the anticipated position is correct). For the more complicated tasks the
environment will be enriched by having separate rooms, doors between the rooms, light indicators
on the doors (or near them), etc. or a complex labyrinth will be built.

Before running the actual robots, a simulated robot in a simulated environment will be played (see
Figure 37). This will make the step of extraction of the data from the environment easier as well the
control and monitoring of the robots actions. The NBU team will use the Webots environment for
that purpose. This step will allow the team to directly run into the hard problems of anticipation
using analogy-making, while the difficult tasks of perception of the real environment and acting
over it will be simplified in this first phase using the virtual environment, while the tasks of
perception and manipulation of the real physical environment will be left for the second phase of

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 57/
95

the project (as planned). This will ensure a gradual development process and eliminate high-risk
pathways.

Figure 35 (a) NBU’s dogs (AIBO ERS7) playing with a bone and (b) NBU’s Pioneer 3DX.

Figure 36 The robot in its environment with a hidden object.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 58/
95

Figure 37 (a) 2D image from a simulated AIBO’s point of view (Webots) and (b) external view of a simulated

scene (Webots)

5.2 NBU’s system architecture

Solving any of the tasks in the scenarios will require perceiving the scene and building internal
structural representations, retrieving analogous situations from episodic memory, mapping the
current situation onto the retrieved one, transfer of a prediction and/or a plan for action from the old
episode to the new one, evaluation of the transferred knowledge, actually performing the plan with
physical actions, and possibly learning (e.g. generalizing the episodes and building schemas). This
cycle may be grouped into three subprocesses: representation-building, reasoning by analogy, and
performing actions (see Figure 38).

Figure 38 Basic processes required for solving a task in the environment.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 59/
95

Thus the system to be implemented by NBU will be organized in a three-tier fashion. Each layer
will be implemented by different independent modules. This allows that any of the three tiers can be
upgraded or replaced as requirements or technology change, in this way limiting the impact on the
others parts of the system. The different tiers and their interaction are shown on the next illustration
(see Figure 39).

Figure 39 NBU’s overall architecture.

5.2.1 The world layer
It can be either simulated, using appropriate software like Webots, or realized with a real robot
living in a real world environment. In the first step NBU will focus on the simulated world
approach as it will facilitate the retrieving of structured data (objects and their relations) directly
from the environment. The description of the next layers will focus only on a simulated
environment case, the real world scenario will be implemented only after the simulated one is
successfully developed.

The NBU team has purchased the AIBO robots and Pioneer robot and started learning them and
experimenting simple programming. It also purchased the WEBOTS environment and started
learning and using it as well as experimenting the relations between the real and the simulation
robots. Webots is a professional mobile robot simulation software, which allows the simulation of
physics properties such as mass repartition, joints, friction etc. It is possible to control the robot by
setting the position of its body parts (with regard to the joints), as well as to obtain information from
the robot’s sensors. Each simulated robot can be modeled individually. Webots comes with several
models of real robots, like AIBO and Pioneer. This enables transferring tested behaviour to real
robots. In addition, Webots allows connection with external software modules.
The results so far include:

- creation of worlds with physical laws
- creation of object with any shape
- creation of robots and endowing them with behaviour (i.e. programming their behaviour)

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 60/
95

5.2.2 Middle layer
The general purpose of the middle layer is to serve as a mediator between the other two levels,
effectively translating and filtering out the information from one layer to the other. More precisely,
given the description of the world obtained from the world layer, the mediator should filter out all
the information that cannot possibly be perceived by the robot (given its current position and the
direction it is facing, its sensors etc.) thus creating a reduced scene representation. Next, the needed
relations have to be extracted for the objects in the reduced scene representation. At the final step all
this information has to be represented in a suitable form and sent to the next layer.
For the inverse operation, the data from the reasoning layer (the plan) is transformed into sequences
of low level commands to be sent to the simulator for actions to be carried out.

5.2.3 Reasoning layer
The reasoning layer is where all the information coming from the middle layer is processed and
high level commands are issued backward to it. Here is where the anticipation is built based on the
description of the current situation and knowledge of past situations in memory.

The communication between the reasoning layer and the middle layer is by data exchange, the data
being in XML format. Each exchange should be done with a complete XML file conforming to the
DUAL/AMBR XML Schema. This standardized way of communication should permit DUAL to be
easily interfaced in different ways ranging from direct access (like web services) to other
models/layers. This layer is in fact DUAL.

5.3 DUAL
DUAL is a general cognitive architecture developed at NBU which supports emergent computations
based on the combined behavior of many micro-agents. Representation of knowledge is
decentralized and distributed over coalitions of micro-agents. The architecture is hybrid and each
micro-agent combines symbolic processing with connectionist spreading activation. The individual
speed of symbolic processing of a micro-agent depends on the dynamically computed activation
level of the same agent. Thus the two aspects are highly integrated. A model of analogy-making,
AMBR, was developed based on the DUAL cognitive architecture. AMBR will actually do the
reasoning needed for predicting and anticipation in the selected scenarios.

The problem is that the current realization of DUAL is done in Alegro Common LISP. This version
of the architecture is a research product and is not ready for direct use in applications such as real
robots. To overcome these limitations a very demanding task has been undertaken, namely to
reimplement DUAL in C# in a UNIX environment. This language was selected to ensure easy
interface the C# version of DUAL with various applications which will be needed for fully
controlling the robot. The interface will be implemented either by using the .NET build mechanisms
combined with a .NET languages or by using a standardized way of communication such as XML
messages or Web Services.
This will permit easier creation of extensions for the model that will preprocess the data i.e. creation
a sort of high level perceptual level (the middle layer of the system architecture can be regarded as
this kind of extension)

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 61/
95

Running DUAL on .NET will also permit using it on other computer platforms (using Microsoft
.NET or Mono).
New functionalities will be developed within the new re-implemented model of DUAL, some of
them are: automatic episode visualization using graphs, easier episode creation, management of the
knowledge bases (general and episodic ones), real time visualization of the internal mechanisms of
DUAL (visualization of the thinking process).

5.4 Acquaintance with the Robots and the Simulator
Different tasks are being carried on in order to gain in-depth knowledge of the way the robots can
be controlled and simulated using Webots.

5.4.1 Making the simulated robot move realistic
On the basis of the analysis of the scenarios the following ‘elementary’ motions are implemented
for the simulated AIBO:
- moving straight (both ahead and backwards) and aside (both left and right)
- turning (both left and right)
- manipulating objects (with mouth and/or paws)

Some motion classes are required for “long” movements from current to some other position.
Others are for precise positioning, for example when the AIBO has to face (and may be take/bite)
an interesting / valuable object.

The Sony tool MEdit (see Figure 40) has been used, which allows its users to construct AIBO
positions (*.pse files) and to make animated smooth transitions (*.kmf files) across them. In
addition this tool exports the motion animation files in format used by Webots - *.mtn. Although
the animation may seem like an artificial object in the simulation, it affects and is affected by all the
objects in Webots environment as expected (kicking, crashing in an obstacle, etc).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 62/
95

Figure 40 Sony MEdit tool in action.

The AIBO skeleton pose is completely defined by its 20 joints’ angles. Thus any position imposes
some dependencies among those angles. NBU has developed a tool which calculates these joint
angles according to the required position and moreover, computes all the positions for a motion (the
more the positions are, the more adequate the motion is – because the angle speeds for various
joints are different, it may happen that during the animated motion the paw “sinks” into the floor).

Later this problem has been solved more effectively by directly supplying the joint angles values to
the simulated AIBO. Although it requires many more calculations (the correspondence to frames in
animated motions has to be calculated by this algorithm), it makes no distinction between rough and
precise motions and in this way the motion becomes more purposeful (not a sequence of strange
movements as in an army parade).

These algorithms (both approaches) are transferable to the real AIBO robot, thus serving a double
purpose.

5.4.2 Create a simulated vision system
The idea is to use the environment and robot representation in Webots and generate a symbolic
description of what is perceived by the robot. The intention is not to have an image-recognition
system, but to use the simulation environment parameters and to construct with them the picture the
simulated robot should be seeing. In this way, the robot will have a mediated perception which
supplies the robot DUAL/AMBR model with an adequate (symbolic) description of the scene which
is categorized in terms of the concepts of the robot.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 63/
95

The solution of this problem is related to the solution of two sub-problems, which are described in
the following sub-sections.

5.4.3 Identify the state of the current environment
This means obtaining the current position and orientation information for all the objects in the
current environment.

5.4.4 Filter the visible information
This includes the ability “to see” only objects in current visual cone. In addition to the primary
calculation (whether the intersection between the object’s shape and the visual cone is not empty),
this requires the problem of doing some more advanced calculations to eliminate the visually
overlapping objects (entirely behind an obstacle) and the problem of recognizing partially visible
objects. Because the Webots does not provide such functionality we have to handle this on our own.

No sub problem has a priority in solving (it is a waste of efforts to have positions of the objects
which are not visible, and yet no decision about which objects are seen can be made without
knowing their positions) thus some generic solution should be found.

And finally, the visible portion of the world has to be symbolically reported to the middle layer.

5.4.5 Establish a two-way connection with external software module
The external software module we are interested in is the middle layer. The sensory system (visual
and later on, acoustic) should supply the information about its neighbouring environment, and
conversely – the middle layer should be able to command the Webots simulation at any moment
(this is one of the reasons why we decided to solve the movement problem directly and abandoned
the motion animations – the body could not do anything observing the law of inertia until the entire
animation cycle is completed). Webots enables TCP/IP connections in both directions.

The middle layer will be created to control the robot’s actions and to supply the perceived data to
DUAL/ AMBR in a suitable form. Separating it in an additional level is needed to have the robot
level isolated – i.e. whether it is an AIBO, a Pioneer or Webots’ simulation of any of them, the
communication will not be affected. Both systems will communicate through high level interfaces.
Here is a list of methods the control interface IRobotControl will provide:

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 64/
95

Method Parameters Description
LookIn direction Makes the robot look in direction requested
LookTo position Makes the robot look towards the position requested
GoTo position Makes the robot go to position requested
Stay Makes the robot stand still
Turn angle Makes the robot turn in angle in radians requested
Take object Makes the robot take the object requested (the object

contains information about its position)
PlaceIt position Makes the robot place the object it is carrying into

position requested
Table 3 Robot controlling interface.

In all the methods listed both direction and position parameters could be relative (compared to its
current sight direction or its current body position) specified or absolute (according to the scene
map).

IRobotControl interface will have as many implementations as robots (in our case four – AIBO and
Pioneer). In addition, for simulations an extra interface shall be provided to serve as delegate for
IRobotControl and to supply commands to Webots’ world robots.

The feedback interface will supply robot sensory information to the middle layer in XML.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 65/
95

5.4.6 Make the simulated robot solve some base problems
The simulated robot described so far has several abilities but all of them may be classified as
inborn. This point regards endowing the robot with some instincts, i.e. it concerns problems the
analogy-making system AMBR will not take care of, like:

• Moving from current position to a desired one
• Object manipulation

Both of them should use solutions 3.1 and 3.2. In addition, the optimal (according to criteria
supplied) motions have to be chosen.

• Searching

There are two kinds of searching – visual and walking. Again solutions 3.2 (and 3.1) should be
involved and if the description is fuzzy/incomplete probably some consultations with the
“mind” could be done, i.e. 3.3.

• Notification

The pre-mind system discussed here should be programmable by the external superstructure to
perceive important objects/actions/events and to notify this superstructure about them. It has
also to filter the useless information before supplying the perceived world description to the
mind.

Two examples:
- in single scenarios if the task is “find a big red object”, the shape information might be

considered useless by AMBR and thus not transferred
- in social scenarios it is vitally important for the “bad guys” to notify opponents/enemies

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 66/
95

5.5 Knowledge representation and management

One possible initial state for the task “find an object” is shown in Figure 36.

In order to perform the task there are several states that the simulation must achieve as shown in
Figure 41. The states are depicted as a boxes connected with a solid arrow. After the initial state
follows the intermediate state, in order to achieve the desired state (intermediate state at this step),
the robot must perform an action that should cause the state transition (in this case the action is find
the bone which in turn must e achieved by moving to one of the three possible positions A1, A2,
A3)

Figure 41 The different states that must be achieved in order to correctly solve the task.

The detailed representation of the initial state is shown in Figure 42.

Figure 42 Detailed representation of the initial state for the task "find an object" in DUAL/AMBR (generated

automatically).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 67/
95

5.5.1 Development of knowledge representation in DUAL/AMBR

Entities to be
represented Use in the scenarios Availability

status
1. Concepts and

instances
everywhere available

2. Relations and
propositions

everywhere available

3. Episodes,
events and
states

everywhere present

4. Goals everywhere present
5. Absolute

positions
everywhere missing

6. Motor
actions

everywhere missing

Table 4 Scenario elements representation.

• Representation of Concepts and Instances

The concept-agents represent classes of objects, whereas the instance-agents represent
individual entities. The concepts are arranged in a taxonomic semantic network via :subc
and :superc links. The instance-agents are related to the concepts via links :inst-of and
:instance. Each concept can be connected to zero, one, or more of its super-classes or sub-
classes. It is an assumption, however, that the top-down links :superc and :instance
represent only the most salient subclasses and instances, hence they cannot be too many
(usually 1-4).

• Representation of Relations and Propositions
Relations are represented in the same way as their arguments – via a network of concepts
and instances. The conceptual co-references (c-coref) connect two complementary aspects
of the same entity.

• Representation of Episodes, Events and States
Episodes, events, and states are represented via networks of agents, organized around the
following principles (see Figure 43):

o Each event represents a certain change in the environment or in the current goals.
One agent serves as a head of the event, a second agent states for its initial state, and
a third one - for its final state. It is possible the events to have also one or more
intermediate states.

o The states are representation of the entities that are relevant to the respective event,
i.e., the entities that change, together with the reasons that cause this change. Thus,
each state consists of a head (shown on the picture) and a coalition of agents –
objects, relations, etc.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 68/
95

Episode

Follows Follows

Event 1 Event 4

Event 3

Follows
Initial state Final state

Initial state Final state

Event 2

Figure 43

o The episodes represent larger pieces of knowledge and usually consist of several

events. For example, one episode could be the story when the robot searched for a
red cube in a labyrinth. During this search, several events have been happened. Some
of these events could be caused by the robot (moving from one room to another or
from one place to another; manipulations on the objects, etc.), some of them – by
other subjects (other robots could manipulate the objects or to change their positions;
external events like change of the light system may occur).

Some of the entities could by invariant during the events, but relevant for the whole
episode. In such a case, they point only to the head of the episode, not to the head of the all
events. The same principle is valid for the entities that are relevant to the events but are
invariant to the states, included in the respective event. These entities point only to the
respective event, not to each single state.
The events could be interconnected each other with relations like follow and later.
However, this is not necessary – the exact order of the events can be forgotten.

• Representation of Goals
The goals are actually states or events. In each task the robots have one main goal – to reach
from the initial state to the goal state, or a certain event to happen. Thus, the representation
of the goal state is the same like the representations of the other states and events. The
difference is that the goals stay all the time attached to the GOAL node and supply the
relevant to the respective goal entities with activation.
However, in order the global goal to be reached, it should be dynamically subdivided into
smaller subgoals. Transfer mechanism is responsible for the creation of these subgoals;
evaluation and decision mechanisms restrict them.
Each change of the subgoals actually is an event, even if nothing changes in the
environment.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 69/
95

• Representation of Absolute Positions

It is possible that some slots of certain agents are filled with numbers that represent absolute
positions. Later these numbers can be used for performing calculations for estimating other
positions or for planning certain actions to reach or to avoid the respective objects.

• Representation of Motor Actions
Some large-scale movements could be represented in schemas. Examples for such
movements are reaching an object, which the robot sees; movement to a certain absolute
position; movement to a door and entering in the neighbor room, etc. Motor actions can be
represented as single entities, but also as parts of larger condition-action-prediction schemas.

5.5.2 Learning
During perception and actions large temporal KB is created. After decay, some of the temporal
agents and links should disappear, but the most relevant (active) ones should change their status into
permanent and should stay in the LTM.
Probably, the permanent links also should change their weights, depending on their use.
Learning strongly depends on the mechanism for supplying the model with input and goal –
sequential direct influence. The same is true for perception and selective attention – they influence
directly and sequentially the learning.
On turn, learning influences retrieval and generalization directly and sequentially. Learning
influences also decision-making indirectly.

5.5.3 Transfer
Some elements from the past – situations, single objects, relations, actions, etc. should be
transferred in the new episode. Transfer mechanism is necessary to complete the analogy between
two domains – to fill the missing relevant relations, objects, schemas, etc. in the current situation.
Transfer is strongly integrated with decision making. This integration is overlapping and a direct
one. Actually, the GOAL/INPUT mechanism influences all other mechanisms because it determines
the relevant items.
Transfer depends also on retrieval on generalization, on schemas with condition-action-prediction
part. On turn, actions directly and parallel depend on transfer mechanism. Transfer determines the
set of possible actions to be performed. On turn, the really possible actions influence decisions
(particularly evaluation) and respectively - transfer.

5.5.4 Decision Making
Decision making involves several sub-mechanisms – evaluation of the transferred knowledge;
decisions, concerning selective attention; decisions, concerning actions; decisions about subdivision
of the goals.
The evaluation of the transferred knowledge is very important. For example, it is possible the
system to transfer a solution from a past episode that involves a certain action. However, in the
present situation this action can not be performed because of certain restrictions. In such a case, the
model should decide to ignore this transfer and to pressure the system to search for other analogical
situations. Thus, from one hand, micro-analogies between the elements from the current state and

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 70/
95

different past episodes should produce novel solutions. From the other hand, the decision-making
mechanism is responsible for choosing between two or more transferred condition-action schemas.
This sub-mechanism – evaluation of the transferred knowledge – is integrated with the transfer
mechanism – parallel, direct, and one-mechanism based integration.
The other decision-making sub-mechanisms involve selective attention, actions, and division of the
goals. All four sub-mechanisms are integrated in a single decision-making mechanism, which is
directly integrated with retrieval, learning, action, transfer, selective attention, and emotions.
Decision-making influences also GOAL/INPUT indirectly, mediated by attention. On the opposite,
the GOAL/INPUT mechanism influences directly decision-making, because the former determines
the relevant items.

5.5.5 Generalization
Generalization is responsible for creation and management of the conceptual network, and also for
creating the different types of schemas, in particular, schemas with condition-action-prediction part.
Thus, we can separate generalization on a micro-level (single concepts) and on a macro-level (large
schema coalitions).
Generalization consists of two integrated sub-mechanisms – automatic one and decision-making
based one.
Automatically, each concept can manage its relevant instances, and if certain relevant information is
common for all these instances, the respective concept should generalize it. However, it is necessary
also each new instance that becomes relevant to be able to evaluate whether some facts contradict to
the generalization. Thus, generalization could not be separate from the evaluation of the performed
generalizations.
 The generalizations on a micro-level can grow up, in order to satisfy structural consistency, and as
a final result, large schemas to be generalized. In order to ensure such structural consistency, several
agents should be monitored simultaneously. Analogically to the mechanisms for structural
correspondence in analogy-making, this violates a little bit the architectural principles for local
computations only. However, this price is not so large for the expected profit.
Generalization is strongly integrated with learning, attention, GOAL/INPUT mechanisms.
Generalization sequentially influences retrieval, transfer, schemas. Generalization is sequentially
influenced by attention and decision-making mechanisms.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 71/
95

5.6 Conclusion

The agents to be used in the scenario are a Pioneer 3 or/and an AIBO. The perceptual capabilities
of the robots will be helped by a clear and simple coding of the objects and the relations among
them (color and shape labels). The robot scans the scene and encodes it by using a conceptual
system which is part of its long term memory and is organized in the form of general knowledge
(e.g. cubes, obstacles, etc.) and of episodic knowledge (e.g. previous episodes of activities). The
robot is given a goal or generates it. On the basis of the goal and of the perceived scene it retrieves
relevant episodes from its episodic memory or general knowledge schemas and generates an action
plan and expectations about the resulting situation. The actions are quite general e.g. ‘go toward the
red cube’, ‘take the object’, etc. and the details of the safe execution of the action will be taken care
of by a supervising module. This level of description has been adopted because of the difficulties
that are foreseen to bridge low-level perceptual capabilities and the high-level semantic tree type of
encoding of knowledge needed for DUAL/AMBR. This will allow exploring the full anticipatory
potential of analogy by the NBU team.

The environment will be a standard office room but for the time being only simulated environments
have been built using Webots. In this simulation environment worlds can be created involving
objects with various shapes and colours. At the same time, robots can be incorporated in the
simulations and endowed with behaviour. Webots possess several pre-programmed robots – Pioneer
3 and AIBO among them – which makes it convenient to be used in our case. NBU has focused on
the simulation of AIBO robots in Webots so far.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 72/
95

6 OFAI

ANTICIPATION IN A DYNAMIC WORLD

 A “dog” growing up (Game Room scenario)
This task is a bottom-up scenario, inspired by the idea of interactivism, tailored to implement
and evaluate the artificial immune system architecture proposed by OFAI. Therefore the
scenario is divided into three developmental stages:

In the first, early developmental stage (“capturing basic how-to knowledge”), the robot starts
basic interactions with its environment (like walking around, looking at things, poking them),
driven by basic instincts and motivations, capturing basic episodes of experience. After a
specific amount of time and training the robot learns through reinforcement which
interactions environmental features (or to be more specific objects) allow; thus in the first
stage the robot acquires concepts of objects and the world itself, if not to say affordances of
objects.

• Through interactions the robot gains knowledge about concepts of objects and the
world around it.

• The main developmental achievement is to acquire object generalisations and certain
concepts (one might even say affordances of objects such as the affordance of an object
to be moved).

• As shown in the figure below, one achievement of this developmental stage will be e.g.
to learn to expect where a moving ball will reappear after moving behind an obstacle
(e.g. a wall).

In the second developmental stage (generalisation), after having acquired certain basic how-
to knowledge about interacting with the world, the robot learns generalisation. The “how-to”
knowledge which has been acquired in the first level is anchored in the following learning
process.

• Now the robot should develop more sophisticated concepts, such as object continuity –
e.g. it learns to anticipate that, depending on the speed, the ball will reappear on the
other side of or remain behind the wall.

• If the ball moves behind the wall with a low speed, the robot should learn to look after
the ball on the right side of the wall, if the speed vector increases it should learn to go
look after ball on the other end of the wall.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 73/
95

In another setup, the wall might be blocked at the end, and a ball, coming in with a high speed,
normally reappearing on the other side, now does not reappear, and there is a sound (the ball
bumping against the wall) coming from behind the wall.

• In this case the robot should find out, that something has changed and that it needs to
go and search for the ball from the right side again.

In the final stage, as the robot has seen the ball disappearing behind several “hiding places”
(walls, obstacles), it shall now learn how to find the ball again and move around, looking for
the ball, anticipating it to be in one of the observed “hiding places”.

• The goal is to instantiate a hunter-prey sub-scenario, where prediction of behaviour,
based on the capabilities acquired in stage one and two, is implemented.

A second robot can be added to the scenario (i.e. KURT 3D, for further details next section).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 74/
95

This task will converge into the following scenario: by observing the prey, the AIBO should
“hunt” the prey by simply intercepting it, or after some experience, going to a place where it
anticipates the prey will go, realising an offensive tactic.

• The robot thus performs epistemic actions such as “look if” or, “look for”. This offers
a bridge to constructive perception, what means that in general, what is seen is
interpreted by the means of what is expected.

• Expectation then can lead to “asking questions to the world”.

6.1 OFAI scenario in detail

Figure 44: AIBO watching a ball disappear behind a wall

6.1.1 The OFAI test bed
The OFAI test bed consists of a fence-like barrier made from wooden boards. The exterior fencing
is necessary to prevent the AIBO robot from taking French leave. The contents of the test bed vary
according to the different developmental stages. In the first level inside the test bed, a series of
boards will shape a small straight wall and balls will function as (moving) objects to interact with.
Later on other objects such as balls in various shapes and salient colours, the IBone and building
bricks will be introduced.

In the final stage the AIBO robot will share the test bed environment with a KURT 3D robot,
implementing the hunter-prey scenario.

6.1.2 Scenario level one – capturing basic „how to” knowledge
In the first level the number of objects initially is limited and the objects themselves located in the
test bed are deliberately kept simple. This facilitates developing a stable first artificial immune
network level and allows starting tests without requiring all the programming of external filters in
the first stage.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 75/
95

Objects: Balls (pink, white, etc., in any case in salient colours) and a wall (wooden boards aligned

to a wall)
Tasks: Discover that there is something out there, and react to micro-genetic and developmental

selection pressures1.
Result: Develop a stable first level of the AIS.
Complexity:

• Simple object recognition
• Simple attention mechanisms
• Simple object tracking
• Basic movements
• Grasping concepts of the objects in the environment by interacting with them
• Learning to react to selection pressures1
• Developing basic behaviours

Requirements:
• Filter pool (basic colour tracking filters, rudimentary virtual sensors, edge detection filters,

basic motion, etc.)
• Interfaces (communication interfaces, etc.)

Prediction/Anticipation: The artificial immune system architecture has innate predictive and
anticipatory capabilities, realised through the threepart antibodies, consisting of a condition part c,
action part a and expectation part e. At this level the robot develops more complex behaviours and
concepts by evaluating the assumed expectation e, which results from performing action a under
condition c.2

1 (Bickhard 1999) Both, interactively and constructively, perceptually and developmentally, the fundamental form of influence from

the environment to an individual is in terms of relevant selection pressures on the interactions, and, thus, the interactive
organisations, of the system.

2 For details see D4.1.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 76/
95

Figure 45: AIBO starting basic interactions with the environmental features, reacting to selection pressures.

6.1.3 Scenario level two – generalisation
In the second developmental stage, the “how-to” knowledge, captured by sequences of antibodies in
the first layer, is anchored. Additionally this allows the robot to demonstrate the characteristic
behaviour describing the interaction with a specific object, just by accessing the antibody sequence
related to that object, as well as the creation of a topological map of the environment which
corresponds to the topology of the second layer RLA network.

Thereby, as mentioned above, the robotic agent now develops more sophisticated behaviours and
concepts, such as the concept of object continuity – e.g. it learns to anticipate that, depending on the
speed, the ball will reappear on the other side of the wall, or remains behind it.

Objects: Different types of balls in various shapes and salient colours, the IBone and several toy

building blocks.
Tasks: Develop more sophisticated concepts and behaviours.
Result: Generalisation of the first artificial immune system layer, by development of a stable

second layer.
Complexity:

• Object recognition
• Attention mechanisms, selective attention (only the information relevant to object

description should be processed , what is innate to the AIS)
• Anchoring objects and concepts acquired in the first developmental stage
• Anticipatory object tracking based on the concepts acquired in the first developmental stage
• Grasping of concepts, such as object continuity, etc.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 77/
95

Prediction/Anticipation: In the first developmental stage of the artificial immune system
architecture, concepts about the nature of the environment will be formed by interacting with it. In
the second scenario and developmental level, these concepts can be used to build hypotheses.
Planning and anticipation now occurs as a dynamic cascade of internal events. For example, a goal,
represented as an antigen, which is injected into the system.3 E.g. in a situation, where the robot’s
goal is to seek a ball, hypotheses about the location could be tested by inserting antibodies into the
AIS and then trying out the most promising hypothesis. When the robot anticipates the ball to be
behind a wall, it will approach the anticipated location, where all pink objects will primarily focus
the agent’s attention (in the beginning the ball is the pink IBall, later on, as mentioned above,
additional balls with different colours and shapes will be added).

Figure 46: AIBO watching the IBall disappear behind a wall.

6.1.4 Scenario Level three: Hunter-Prey Scenario
The purpose of this task is to develop more complex behaviours, and extend the anticipatory
capabilities of the AIBO. This is by far the most complex level of the scenario, whereas the
complexity can be varied easily. In the beginning, the AIBO will observe the prey and consequently
try to intercept it. The scenario can be extended, wherefore the robotic agent might then observe the
prey and learn typical “hiding places”, later on moving to anticipated “hiding places” of the prey
when trying to catch it.

Objects: In the beginning only KURT 3D, later several walls and obstacles, suitable as hiding

places.

3 For more details see D4.1, section AIS – “how planning/anticipation could emerge”

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 78/
95

Task: Prove anticipatory capabilities; extend acquired concepts and generalisations.
Results: To develop higher behaviours, e.g. finding and retrieving an prey/object, and explicit

planning for action decisions.

Complexity:
This task involves approaching the following problems as:

• Object recognition
• Motion tracking
• Selective attention
• Relation extraction and encoding …
• Map building
• Generalisation from previously observed
• The AIBO should be able to (at least implicitly) categorise observed objects, regardless if

only parts are observed (recognition of semi-visible objects behind other objects, e.g. KURT
3D hiding behind an obstacle, being partially visible)

Figure 47: AIBO watching KURT 3D

Prediction/Anticipation: Predicting and anticipating the prey’s actions (see above).

6.2 OFAI Environment

6.2.1 Simulation versus Reality
The issue whether it is more viable to use a simulated autonomous mobile agent or to make the step
into the real world is not really new and broadly discussed. Both approaches have their advantages
and naturally also their drawbacks. Brooks pointed out that “there is a vast difference (which is not
appreciated by people who have not used real robots) between simulated robots and physical
robots and their dynamics of interaction with the environment” (Brooks 1991). Most of today’s
robots work in modelled worlds, instead of the real worlds, what is feasible because it allows
focusing on specific issues, instead of dealing with dozens of unsolved problems. As described
above, the OFAI test bed is a simplified model world, adjusted to the ecological niche of the robots.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 79/
95

The most obvious choice would be to combine the advantages of simulated robots with real
embodied agents by using the simulated robot first and then run the control programme on the
physical agent. Even though this sounds feasible, there are still disadvantages (Brooks 1991):

• “Without regular validation on real robots there is a great danger that much effort will go
into solving problems that simply do not come up in the real world with a physical robot.”

• “There is a real danger (in fact, a near certainty) that programs which work well on
simulated robots will completely fail on real robots because of the differences in real world
sensing and actuation – it is very hard to simulate the actual dynamics of the real world.”

Simulated agents
The major drawback about interacting with the real world when using reinforcement learning (what
is part of the AIS architecture proposed by OFAI) is the large number of runtime trials necessary,
and the need for carefully “shaping” the learning task by it into small pieces that the robot is able to
learn sequentially. Brooks points out that it seems that for real animals, the vast number of trials
necessary is spread over generations, and runtime learning has a more constrained space in which it
must search.

Of course simulation is also cheaper and faster than the use of real robots, especially when
considering that a simulated robot cannot be damaged or damage its environment and that the
simulation can be sped up easily.

Additionally parallel execution of simulation offers another appealing possibility. Different
parameter sets can be run simultaneously in several programme tasks, instead of letting one robot
solve those problems sequentially.

Drawbacks, when using simulated agents instead of the real world, are pointed out by (Brooks
1991) as follows: First, there is no notion of the uncertainty that the real world presents. Second,
there are tendencies to postulate sensors which return perfect information (e.g. Krautmacher and
Digler experiment in their simulator using special sensors for identifying life signs of human
victims, or sensors detecting food (Krautmacher and Dilger 2004)4. No real sensors can perform
such complex tasks), and very often the global world view and the robot’s sensor view are mixed
up.

Additionally using a simulator may lead to problems which do not occur in the real world (Brooks
1992). A simple example is the encounter of two robots in a grid world. In this case the path planner
has to solve a stalemate situation. Normally robots do not arrive at the same time at the same
position; hence the phenomenon needs no solution. Also when using non-grid worlds, i.e. a two-
dimensional Euclidean space, papers have been introduced, presenting elaborate protocols to avoid
deadlocks. However in the real world two robots hardly ever run down their corridors perfectly and
arrive at identical times, creating such deadlocks.

4 Please note that Digler and Krautmacher postulated perfect sensors because their primary interest was to verify a new immune

system approach for a rescue robot and not having to struggle with issues on sensor level.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 80/
95

Real (robotic) agents
In the real world, the sensors of an embodied agent deliver very uncertain values, even in a static
world, since components of the same type are never the same, two motors have different
acceleration, two cameras return diverse colour maps, infrared- and ultrasonic sensor values for the
same situation differ, etc. (Nolfi et. al 1994). Simulations hardly ever take this into account, but
however it represents a crucial fact about real embodied agents.

The substantial attribute to be modelled is noise and uncertainty of perception and action. Wheels of
the robot may slip, the same driving force may result in various advance speeds on carpet or
parquet, and even the direction of carpet fibres may play a significant role. A signal emitted by the
ultrasonic sensors is reflected differently from different surfaces reporting divergent distance
information. Because of reflections signals may even reach the receiver of another ultrasonic
sensor, resulting in an evidently incorrect value. The signal’s angle of incidence can also be of
relevance.

Even without these difficulties, it has to be mentioned that sensor readings do not represent a direct
description of the world. Sensors measure certain quantities or indirect aspects of the world. Sensors
do not have any concepts of the world or objects in the world and thus do not identify objects or
return information about objects, they do not even separate objects from the background. When
dealing with mobile robots, the uncertain motion of the robot complicates dealing with sensory
information. A robot operating in the real world needs a complex perceptual system. As argued by
Pfeifer and Scheier (2001) and Brooks (1991) it is impossible to treat perception as a black box with
a clean interface to the rest of intelligence. This implies that, in order to be able to deal with the real
world, it is necessary to verify algorithms on real agents.

Past experience with transporting an AIS approach from simulation to a real mobile robot
This section is a brief excerpt of experiences gathered when transporting a recent artificial immune
system from simulated to a real KURT2 robot.

In the beginning an existing artificial immune system approach generated feasible results when
controlling a simulated robot agent, but incipiently did not work on the real robot and in the course
of time generated strange results. Finally, after several experiments and adaptations, a stable version
of the AIS for the real robot was implemented.

When porting the AIS control architecture from simulation to a real robot the sensor issues were
most prominent. The cause of these problems was that objects closest to the sensors often were not
made of ideal materials, and thus lead to incorrect or no sensor values at all. Certain reflecting
surfaces confused the infrared sensors, what took quite some time to figure out, because the robot
did not take a turn for several times, even though it was supposed to learn taking turns; however
nothing was wrong with the AIS, but the surface of the wooden-boards in the corners reflected the
sensors too well, so that the agent did not perceive it.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 81/
95

Another unpredictable and confusing case was the following: Once the robot was supposed to learn
basic obstacle avoidance and wall following and could only choose from the actions go forward,
turn left and turn right, when it came up with going backward in certain evasive situations. After
some time and explanatory attempts, the solution was a defect on the robot: A screw which fastened
a mounting hub on the flattened part of the drive shaft of the gear head motor was loose and thus the
turning-behaviour was affected. Based on the autonomy of the AIS a learning process occurred,
coping with the indeterministic hardware, what naturally made the hardware defect difficult to
detect.

Overview and summary – robotic agents vs. simulated agents
The following table summarises and contrasts using robotic agents versus simulated agents.

Criterion Robotic agents Simulated agents
PHYSICAL
SYSTEM

Agent Agent must be physically built and run;
great potential for breakdowns, slow,
cannot be run in the absence of
experimenter

Arbitrary number of copies can be
produced; well-suited for systems
involving many agents and artificial
evolution; functions reliably even in
the absence of the experimenter

Physical
environment

Given; environment has its own natural
dynamics

Everything must be taken into account
by programmer; often hard to simulate;
realistic simulations computationally
expensive

Sensors Given; no idealization, no “cheating”;
often unpredictable effects occur
(interference, reflectory properties of
surfaces, drastic changes in intensity)

Sensors hard to simulate realistically;
idealized sensors common, e.g.,
distance, object or agent recognition

Motor system Dynamics given; complex ones hard to
build and hard to control; imprecisions

Dynamics hard to simulate realistically

Dynamics
in general

Given; exploitation of dynamics
necessary and natural

Hard to simulate; often ignored in
simulations; dynamics often not
exploited

Table 5: Comparison of real and simulated agents (Pfeifer and Scheier 2001)

OFAI is so far only using the real robots (see later in the document), but due to the reasons pointed
out above, using a simulator too for testing options and parameters, co-developing the AIS on the
simulated and the real robots is currently being considered.

6.2.2 Robots being used

OFAI is primarily using the Sony AIBO robotic platform (Artificial Intelligence Robot).

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 82/
95

Figure 48: Sony AIBO ERS-7 robotic platform

Although AIBO was created initially as a robot for home entertainment, it is being used by more
and more researchers looking for a low-cost programmable robot platform. AIBO is completely
programmable at a variety of different levels. There exists a broad family of different programming
kits for AIBO, which are being used from a wide variety of developers indicating that it is well
established in academic circles.

Why are we using the AIBO?

The main advantage of working with Sony's AIBO is that it is an accomplished and stable
development platform. In addition, it features state of the art hardware and free and downloadable
software-programming tools. This allows fully gearing resources and focus on programming higher
levels.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 83/
95

Figure 49: AIBO Features - Front

[Source: Sony AIBO-Europe Homepage]

Figure 50: AIBO Features – Back

[Source: Sony AIBO-Europe Homepage]

Figure 51: Sony AIBO Illume-Face capabilities

[Source: Sony AIBO-Europe Homepage]

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 84/
95

The most important specifications summarised:
• Components: Body, Head, Four Legs, Tail, Ears
• CPU: 64bit RISC processor
• Main Storage: 64MB SDRAM
• Program Storage Medium: Sony Memory Stick™ Media for AIBO
• Image Input: CMOS Image Sensor (300K pixel)
• Audio Input: Miniature Stereo Microphones
• Audio Output: Miniature Speaker
• Built-in Sensors: Temperature Sensor, IR Distance Sensor, Acceleration Sensor, Pressure

Sensors (Head, Face, Back, Legs and Tail), Vibration Sensor
• Power Consumption: Approx. 9W (Standard Operation in Autonomous Mode)
• Battery Charging Time: Approx. 2 hours
• LCD Display: Time, Date, Volume, Battery Condition
• Operation Temperature 5 - 35 degrees Celsius (41 - 95 F.)
• Operation Humidity: 10 - 80%
• Dimension: 180 x 278 x 319mm (w x h x l)
• Mass: Approx. 1.65Kg (Including Battery and Memory Stick™ Media)

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 85/
95

KURT 3D

In the third stage of the OFAI scenario, as final level of the Game Room scenario, a hunter-prey
scenario has been suggested. For the realisation of this task, the AIBO robot will take the hunter
part and the KURT 3D will be function as prey.

Figure52: KURT 3D and AIBO in the test bed

KURT 3D is an experimental robot platform for sewage inspection, hence the name, which is a
German acronym for sewage inspection robot (“Kanal-Untersuchungs-Roboter-Testplattform”). Its
dimensions are 45 cm (length) x 33 cm (width) x 26 cm (height) and it has an approximate net
weight of 10.4 kg.

The robot carries an IBM ThinkPad T42p (1.8 GHz, 512MB RAM, 2kg) and a 3D laser range finder
(based on a Sick LMS, +7.0 kg) that increases the height to 51 cm and the weight to totally 22.6 kg.
KURT2 operates for about 4 hours with one battery charge (28 NiMH cells, capacity: 4500 mAh).
An embedded 16-Bit CMOS microcontroller is used to control the motor and lower sensors (Phytec
MiniModul C167, incl. Flash ROM). The maximum controlled velocity the robot can reach using
its two 90 Watt Maxon motors (transmission 1:14) is 4.0 m/s (14.4 km/h).

The most important specifications summarised are (according to the KURT 3D homepage5):

• 90W Motor
• Power Supply: 38V
• Main Sensor: 3D laser scanner based on a Sick LMS, 181 values in 181 degrees in 13 ms,

24V extra power supply
• Wheel Encoders

5 http://www.ais.fraunhofer.de/ARC/KURT 3D/

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 86/
95

• Maximal possible speed 5.4m/s
• Maximal controlled speed 4.0 m/s. (Controlled speed means that the robot avoids humans

and other obstacles)
• Weight: 3D Laser Scanner: 7 kg, Laptop: 4.2 kg, KURT2 Body: 10.4 kg, Cover: 2.8 kg (the

cover includes batteries for the 3D scanner)
• Additional sensors: 2 Logitech QuickCam® Pro 4000 VGA-Cameras

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 87/
95

7 UW-COGSCI

FINDING AND LOOKING FOR

 Finding a specific object (Game Room)
The purpose of this task is to find a specific object in the environment (e.g. a red cube). The
degree of detail in the description must be sufficient to define unambiguously a single object,
not a class of similar ones. For example “red cube” is to be used in the case when there is a
single red cube, and “big red cube” if there are several red cubes with different sizes and only
one of them is big.

 Finding members of a class of objects by class description (Game Room)
The purpose of this task is to find any object matching some general or partial description (for
example “find a cube” or “find a red object”). As in the previous case, prediction or
anticipation can be based on previous experience, recurring spatial relations, etc.

 Looking for an object in the House (House)
This task is placed in the House environment. Coloured light signals might be positioned
above/aside passages between rooms. These lights signal if the passage is open or closed, and
might have periodic behaviours. In this task the robot’s goal is to find an object that is hidden
in one of the rooms in the shortest time or using the shortest way. The level of detail in the
object’s description may vary. In the case of class-definitions of the target, the purpose of the
robot is to find any object that matches the given description.

In some conditions, the target's location is probabilistically biased towards certain locations
(e.g. red cubes tend to stand on yellow cubes, although not always, or to stay in some rooms).

UW’s aim in this project is to create cognitive, anticipatory systems that can learn how to solve
challenging tasks with minimal interference by an external teacher. In fact, UW is interested in
having an autonomous system – either in simulation or a real robot (termed robot in either case
herein) – learn to interact with an outside world. To achieve this, the learning system is biased
towards learning an accurate predictive model of how the environment changes – with and without
direct interaction of the robot itself. This task in mind, we describe the scenarios relevant to UW,
the intended experiments and required implementations to realize the experiments.

7.1 Monitoring an Interesting Scene
Before starting with actual object or environmental interaction, a preliminary task is to monitor
certain scenes with one or more objects in them predicting subsequent sensory input. The scenario
is intended to evaluate predictive learning structures that continuously predict subsequent
environmental input based on current input and internal state. Such experiments will be carried out
with 1-D and 2-D simulations of moving objects. These scenes will be generally small – restricting
the information content of the images to enable the system to process the given input. Alternatively
to a complete scene monitoring, UW intends to cooperate with IDSIA to evaluate the potentials of

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 88/
95

fovea-based vision. Figure 53 shows a scene with several moving objects (indicated by a movement
vector). Objects may move with constant velocities and change their direction vectors (lossless)
upon impact with another object or the walls.

Figure 53 A two-dimensional scene will form the basis for predictive model building experiments.

7.1.1 Representation of the Environment
UW’s aim is to represent this environment using the simulated raw camera input. That is, the scene
is discretized in small squared areas (as indicated in the figure) where each square is described by a
corresponding illumination value. Thus, objects are not directly perceived as objects but rather as
darker shades in a light background (or vice versa or just in black and white of with additional color
distinctions dependent on the complexity of the task). Considering a grey coded image, a two-
dimensional input vector will be provided. The output vector (or the to-be predicted vector) is the
input vector at the next state. In this sense, an input vector can be considered as the neural activity
on a simulated retina (fovea-based image processing comes at the next stage). Thus, image
processing is based from the beginning on (simulated) neural activity based solely on (unprocessed)
sensory information.

Alternatively, an abstract representation of the images will be available that denotes exact center
coordinates and velocity vectors of the simulated objects. This information may be either used to
investigate learning of correlations with visual information and abstract (object-based) coordinate
information, or it may serve as a basis of a different kind of predictive learning – based on
abstracted, coordinate-based predictive learning. A study comparing learning based on either
representation may be of interest to the project.

Finally, each object may be enhanced with different properties such as color, brightness and shape.
This information may be available to the learner as well – in any desired code – and may be used to

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 89/
95

either encourage the formation of associations between sensory input and abstract object properties,
or be the basis for more abstract, symbolic learning investigations.

7.1.2 Learning Object Behavior
It should be clear that either representation (that is, visual input or object coordinates (without
velocity vector)) does not provide sufficient information to predict the next state of the objects in
question. Thus, the learning system needs to learn an internal representation that predicts
continuation of movement once movement is encountered. This movement must be progressed
through the predictive model. It is hoped that this leads to an interesting investigation of emergent
object-oriented representations of predictive structures. Hierarchical predictive structures are
expected to be crucial in the realization of this task.

Initially, it will be most likely sufficient to monitor scenes with one object only. Later on, scenes
might be enhanced to monitor various objects with different colors (or brightness / darkness) and
shapes. Since any of these properties leads to the need for different prediction types, these property
manipulations will serve well to investigate emergent object-oriented representations (in neural
network structures or more rule-oriented classifier system structures).

Additionally to property manipulations, the robot may be supplied with both task representations
(sensory and abstract) and be encouraged to use the abstract information as context information to
improve its predictive sensory system. In this way, associations may emerge that link movement
patters from sensory input to corresponding abstract movement patterns, or similarly, movement
patterns that are dependent on shapes with abstract shape properties.

7.1.3 Learning Visual Input Change
Apart from monitoring the complete scene, it is also in the interest of UW to investigate the
behavior of a system that watches the incomplete scene, or, watches parts of the scene in high detail
and other much more fuzzy (fovea-based vision). Similar tasks are imaginable with respect to object
recognition. However, the movement of the fovea itself and the expected resulting sensory change
are interesting additional challenges.

Movement of the fovea and the focus can both lead to expected and rather regular successive inputs,
that is, a change in focus will either decrease or increase the perceptual horizon. Similarly, a shift in
focus shifts the image in the other direction. Thus, fovea-related actions can serve as important
predictive context information on how the sensory input is expected to change once (and while) an
action is executed.

7.2 Finding a Specific Object
Since it is UW’s intention to learn emergent object representations, as described above, the first task
needs to be evaluated before moving to the task of finding an actual object. Essentially, it is
necessary to have evolved a link between plain sensory information and corresponding object
properties. Once such a representation is available, the task of finding a specific object can be
addressed.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 90/
95

Many ways can enable a system to find an object: In fovea-based vision, it might be sufficient to
simply make the system focus on the object in question. Given a manipulandum (such as a robot
arm), it would be necessary for the arm to touch the object or even grip the object and move it to a
specific position. Given a mobile robot, the robot would need to approach the specific object and
touch it touch or grip it in order to trigger a successful “found” event.

7.2.1 Action Control to Find Objects
In any of these cases, it is necessary to have an action control module – or rather have action control
integrated into the robot system. Thus, it is necessary to design an action control module that can
induce forces (such as directional forces) to influence its own movement (wheels) or the movement
of a manipulandum (such as the robot arm).

UW is currently developing a robot arm simulation. Our simple arm model is able to simulate an
arm of two or three degrees of freedom being able to manipulate the scene, that is, objects in the
scene. The manipulation itself may lead to further capabilities. UW intends to apply this robot arm
simulation to our simple 2-D visual simulation in which a robot arm may be added whose end
touches the scene – potentially manipulating object in the scene.

Another goal is to enhance the above 2-D moving object simulation by enabling the robot to
manipulate one of the objects in the scene inducing force vectors on the object. In this sense, then,
the object will be manipulated by the robot directly. The object then represents the robot arm. To
find another object in question, it will be necessary to execute certain movements making the arm
(that is, the controlled object) move in certain directions. Several simulations are possible either
without friction or with friction, where the latter will make the stabilization of the system most
likely much easier.

7.2.2 Object Identification
In the simpler scenarios in this section it is assumed that a full description of the type of object to be
found is provided. Thus, dependent on the representation the object information might comprise the
actual sensory representation of the object. However, an object property representation – that then
may trigger corresponding sensory information – might be of stronger interest and poses a bigger
challenge to the project.

Certainly, though, the discussed environment enables also the provision of abstract object properties
that result in object identification and retrieval. Thus, the environment also supports the detection
and retrieval of objects on a much more symbolic level. From the cognitive UW perspective,
though, the task will be approached with non-symbolic or only partially symbolic information
usage.

7.2.3 Occlusion of Objects
In the so-far discussed 2-D world, no overlaps were allowed. That is, either the object is in the
scene and thus visible or it is not present. However, in the fovea-based vision scenario, the object in
question may currently not be in the focus of the fovea so that in this case active search actions
(such focusing and moving the focus of the fovea) are required.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 91/
95

To actually simulate occlusion, it is necessary to move to a 3-D scenario in which objects can be
behind each other, can move past each other etc. It is clear that in this case, first, object behaviors
need to be predicted in a more advanced fashion. That is, occlusion needs to be added to the
predictive repertoire. Moreover, object permanence is another challenge that needs to be
investigated.
To start the investigation of finding objects in a 3-D environment, it might be initially sufficient to
start over with the monitoring scene scenario tasks– now in a 3-D context. The scenarios are being
developed.

7.3 Finding Members of a Class of Objects
Besides the necessary actions of “finding” a specific object, it is necessary to identify which object
needs to be found. In the above discussion a complete object description (dependent on the problem
representation used) is already available. However, clearly such a representation is usually not
available (at least in such an explicit form) to cognitive systems. Rather, the cognitive system may
develop abstract, emergent object properties that then may be linked to motivations to retrieve such
objects. Thus, a more challenging task needs to define object properties that are necessarily
searched for. Dependent on the complexity of the situation, the object properties may range from
anything that moves to actual object properties including color, shape, size etc. In the associative
learning architectures, then, the desired properties may be fed into the system from the top (that is,
internally) driving the robot to detect the desired properties and then retrieve the localized objects
by the necessary actions, as discussed above. In a more advanced stage of the project, then,
motivational drives may be included that lead to a drive to interact with certain object, find certain
objects, etc. Object occlusions, etc, will make the task even more challenging. Object permanence
and an internal world model could enable the robot to form optimal search plans.

7.4 Looking for an Object in a House
The final task in the project will be to combine most of the successfully implemented features and
solve problems in a house environment, sketched in Figure 54. The robot’s perspective may be
restricted to a fovea-like area in which the lighter areas will yield more sensory information than the
darker areas. In this way, the robot’s perspective (or sensory input) will be localized while the
robot’s task is to solve global task. The sketched task in the figure would be, for example, to gather
as much water and food as possible or keep its internal water and food reservoirs on an acceptable
level. Food and water resources may be clustered in certain positions in the house and may be
coupled with other resources etc., as desired.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 92/
95

Figure 54 In a house environment, the agent’s perspective will be local although it still needs to explore the

complete house to gather sufficient water and food resources.

7.4.1 Different Tasks yield Different Challenges
The house environment brilliantly suits for an investigation of deeper inferences and problem
solving tasks. As in the room environment, the house environment enables the investigation of goal-
directed behavior and search behavior searching for particular objects, object with particular
properties or objects that are known to satisfy some internal drives, that is, motivations.

Thus, the robot may be initially tested on retrieving certain objects, such as the red food object
depicted in Figure 54. To make the task more challenging, the robot may be asked to switch
between retrieving, e.g., red objects and blue objects, alternating between the two. At the last stage
of the experiment, motivations may be added to the agent, enabling it to decide on its own which
object or type of object to search and retrieve currently.

Many variations are imaginable in the environment including size and color of objects, outline of
the rooms and the corridors, location of the objects, etc. Additionally, doors may be endowed with
signals or keys to allow passages only in certain cases. Moreover, there are also many agent-related
modifications possible such as the importance of filling food and water reservoirs, the effort of
moving around, etc. These variations will necessarily be investigated upon and adjusted reasonably.
The strategies of the robot will depend on the outline of the rooms, the distribution of the objects,
etc. In the interest of the project, it would be interesting to find general distributions and outline
properties that require anticipatory behavior to be solved efficiently – or, that at least show that
anticipatory behavior is superior compared to high-level planning or simple reactive behavior.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 93/
95

7.4.2 Suitability of Environment and Possible Solution Approaches
The environment suits well to experiment with various retrieval strategies, planning approaches,
reinforcement learning approaches, and finally and most importantly, goal-driven, anticipatory
approaches. Clearly, it is in the interest of the project to produce effective anticipatory approaches
for the problem at hand.

Apart from possibly optimal behavior patterns, particularly initially, exploratory behavior, curiosity,
and epistemic actions might be required to learn an effective, abstract, internal representation and
use this representation for effective search and retrieval tasks.

Transfer of knowledge may be tested and evaluated, such as special behavior to pass through a door
or corridor, or certain retrieval strategies for certain objects, etc. The challenges and possibilities are
vast, however, if we are successful in designing a learning system that is able to learn the intended
flexible, sensory based, hierarchical, interactive representations, then it is also possible to reason
and plan within this representation.

The ultimate goal of this project from UW’s perspective is the successful implementation of an
agent that is able to learn an effective outline of its environment in an abstracted, hierarchical
structure. Moreover, it will continuously try to exploit this structure to improve its own behavior.
Motivations will guide this behavior and “pull” the actions of the robot towards those positions or
areas in the house that previously led to the successful satisfaction of internal drives.

7.5 Partner Interactions and Conclusions
UW is a cognitive psychology lab that does not have access to actual robots nor does it have the
expertise to work with actual robots on its own. Thus, UW is dependent on partner interaction to
experiment with the developed algorithms on real robots.

Nonetheless, the proposed simulations are in preparations. A simple simulation of a robot arm is
already available. UW is currently working on the proposed simulation environments and
specifications will follow.

It is expected that over the next year, the simple one-room simulations and related experiments will
lead to first conclusions about the envisioned algorithms and system combinations. These insights
will then lay out the further tasks in the project as well as the necessary environmental
modifications in simulation and in real robots. It remains to be shown, how far the robot’s
capability will grow over the remainder of the project. The scenario and the sketched realizations
will serve as the guideline to successfully accomplish the challenges ahead.

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 94/
95

8 References

Anderson, J. R. & Lebiere, C. The atomic components of thought. Mahwah, NJ: Erlbaum, 1998.

Bickhard, M. H. How Does the Environment Affect the Person? In L. T. Winegar, J. Valsiner (Eds.)

Children’s Development within Social Contexts: Metatheory and Theory. Erlbaum (p 63-92).
1992.

Bratman M. E.. Intention, Plans, and Practical Reason. Harvard University Press: Cambridge, MA,

1987.

Brooks, R. A. Artificial Life and real robots. In F. J. Varela and P. Bourgine, (Eds) Toward a

practice of autonomous systems: Proceedings of the First European Conference on Artificial Life.
The MIT Press/Bradford Books, Cambridge, MA, 1992.

Butz, M. V. Anticipatory Learning classifier systems. Boston, MA. Kluwer Academic Publishers,

2002.

Castelfranchi, C., Modelling social action for AI agents. Artificial Intelligence, 103 (1-2), 157-182,
1998.

Drescher, G. Made-up minds: A constructivist approach to artificial intelligence. MIT Press, 1991.

Falcone R., Castelfranchi C. Towards a Theory of Delegation for Agent-Based Systems. Robotics

and Autonomous Systems, 24, 41-157, 1998.

Jackson J. V. Idea for a Mind. Sigart Newsettler, 181:23-26, 1987.

Jakobi, N. Minimal Simulations for Evolutionary Robotics. PhD thesis, COGS, 1998.

Pezzulo, G., Calvi, G. Dynamic Computation and Context Effects in the Hybrid Architecture

AKIRA. In Anind Dey, Boicho Kokinov, David Leake, Roy Turner, Modeling and Using Context:
5thInternational and Interdisciplinary Conference CONTEXT 2005. Springer LNAI 3554, 2005a.

Pezzulo, G, Calvi, G. Laila, D. Fuzzy-based Schema Mechanisms in AKIRA. To appear in IEEE

Transactions, 2005b.

Pezzulo, G., Calvi, G. A BDI with Distributed Knowledge and Control. ISTC Technical Report,

2005c.

Krautmacher, M., Dilger, W. AIS Based Robot Navigation in a Rescue Scenario. In: Nicosia, G.,

Cutello, V., Bentley, P.J., Timmis, J. (eds.) Artificial Immune Systems. Proceedings of the 3rd
International Conference, ICARIS 2004, Catania, September 2004. Springer Lecture Notes in CS
3239, 106 – 118

File Name: DELIVERABLE_WP2_N_2.doc
Date: 11/11/2005

 95/
95

LeCun, Y., Cosatto, E., Ben, J. and Muller. U. Autonomous Off-Road Vehicle Control Using End-

to-End Learning. Technical report Q458, DARPA-IPTO, Arlington, VA, July 30, 2004.

Nolfi, S., Floreano, D., Miglino, O. and Mondada, F. How to evolve autonomous robots: Different

approaches in evolutionary robotics. In R. Brooks and P. Maes, editors, Artificial Life IV, pages
190--197. MIT Press/Bradford Books, 1994.

Pfeifer, R. und Scheier, C. Understanding Intelligence. Cambridge, MA: MIT Press, 1999.

Pokahr, A. Braubach, L. Lamersdorf. W. A Flexible BDI Architecture Supporting Extensibility, The
2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT-2005),
2005a.

Pokahr, A. Braubach, L. Lamersdorf. W.. A Goal Deliberation Strategy for BDI Agent Systems,
Third German conference on Multi-Agent System TEchnologieS (MATES-2005), 2005b.

Rosenbloom, P. S., Laird, J. E. & Newell, A. The Soar Papers: Research on Integrated Intelligence.

Volumes 1 and 2. Cambridge, MA: MIT Press, 1992.

Roy, D. Semiotic Schemas: A Framework for Grounding Language in Action and Perception.

Artificial Intelligence, in press.

Schmidhuber S. and Huber, R. Learning to generate artificial fovea trajectories for target

detection. International Journal of Neural Systems, 2(1 & 2):135-141, 1991.

Tsai, R. Y. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision.

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL,
pp. 364-374, 1986.

Verbeek, C., Murr, F., Knoll, A. Das Robertino-Robotersystem: Ein autonomer mobiler Roboter für

Forschung und Lehre. Technical report I0418, Institut für Informatik, Technische Universität
München, Germany, October 2004.

Wolpert, D. M., Kawato, M. (1998) Multiple paired forward and inverse models for motor control.

Neural Networks 11(7-8):1317-1329.

